113學年度 學士後醫學系招生考試

物理及化學試題封面

考試開始鈴響前,請勿翻閱本試題!

★考試開始鈴響前,請注意:

- 一、除准考證、應考文具及一般手錶外;行動電話、穿戴式裝置及其他物品 均須放在臨時置物區。
- 二、請務必確認行動電話已取出電池或關機,行動電話及手錶的鬧鈴功能必須關閉。
- 三、就座後,不可擅自離開座位或與其他考生交談。
- 四、坐定後,雙手離開桌面,確認座位號碼、答案卡號碼與准考證號碼相同,以及抽屜中、桌椅下或座位旁均無非考試必需用品。如有任何問題,請立即舉手反應。
- 五、考試開始鈴響前,不得翻閱試題本或作答。
- 六、考試全程不得吃東西、喝水及嚼食口香糖。
- 七、違反上述規定,依「筆試規則及違規處理辦法」議處。

★作答說明:

- 一、考試時間:100分鐘。
- 二、本試題(含封面)共15頁,如有缺頁或毀損,應立即舉手請監試人員補發。
- 三、本試題共90題,皆為單選題,共計150分;每題答錯倒扣,不作答不計分。
- 四、答題依題號順序劃記在答案卡上,寫在試題本上無效;答案卡限用 2B 鉛 筆劃記,若未按規定劃記,致電腦無法讀取者,考生自行負責。
- 五、試題本必須與答案十一併繳回,不得攜出試場。

Choose one best answer for the following questions

【單選題】每題 1 分,共計 30 分,答錯 1 題倒扣 0.25 分,倒扣至本大題零分為止,未作答, 不給分亦不扣分。1~15 題為物理,16~30 題為化學。

1. A 10 g object connected to one end of a massless spring undergoes 50 oscillations in 5 seconds.

	What is	s the spring c	onstan	t?											
	(A)	5 N/m	(B)	10 N/m	(C)	20 N/m	(D)	30 N/m	(E)	40 N/m					
2.		nple pendului			nall an	nplitude a	nd its leng	gth is dou	bled, what	happens to					
	(A) (C)	It doubles. It becomes				(B) (D)			es as large imes as lar						
	(E)	It remains the	ne sam	e.											
3.	stretch	nin spring that ing the spring itional 10 cm	by 10				onal work	is require							
	(A)	2 J	(B)	4 J	(C)	8 J	(D)	10 J	(E)	12 J					
4.	an additional 10 cm? (A) 2 J (B) 4 J (C) 8 J (D) 10 J (E) 12 J A child plays a string of length = 20 cm connected with a ball of mass $m = 1 \text{ kg}$, and starts to rotate it vertically. Find the minimum speed of the ball at the top that is needed to rotate it vertically in circular fashion? (Gravitational acceleration $g = 10 \text{ m/s}^2$) (A) 0.7 m/s (B) 1.4 m/s (C) 2.2 m/s (D) 3.3 m/s (E) 4.2 m/s														
	(A)	0.7 m/s	(B)	1.4 m/s	(C)	2.2 m/s	(D)	3.3 m/s	(E)	4.2 m/s					
5.	•	dstone increaseduring that tin		•					ough what	angle does					
	(A)	8 rad	(B)	12 rad	(C)	16 rad	(D)	32 rad	(E)	64 rad					
6.	current	nine the force is I_1 and I_2 in the attracted to	oppos	site direction	s. The				•						
	(A)	$F=\frac{\mu_0 I_1 I_2}{2\pi d}, 3$	attracte	ed (B)	$F = \frac{1}{2}$	$\frac{\mu_0 I_1 I_2}{2\pi d}$, rep	ulsed	(C) F	$=\frac{\mu_0 I_1 I_2}{\pi d}, \epsilon$	attracted					
	(D)	$F = \frac{\mu_0 I_1 I_2}{\pi d}, 1$	epulse	ed (E)	F =	0									

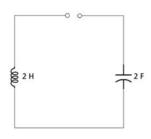
7. How many 1 μ F capacitors must be connected in parallel to store a charge of 1 C with a potential

(C) 9.1×10^3

(D) 10.2×10^3

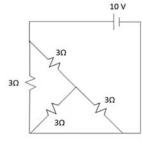
 12.4×10^3

(E)


of 110 V across the capacitors?

(B)

 8.4×10^{3}

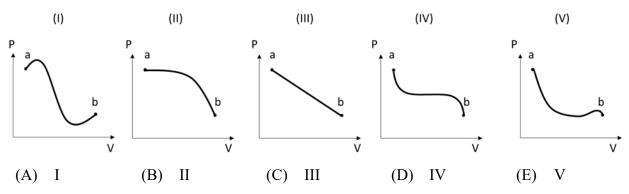

(A) 7.1×10^3

8. Find the resonance frequency of the following LC circuit?

- (A) 0.02 Hz
- (B) 0.04 Hz
- (C) 0.06 Hz
- (D) 0.08 Hz
- (E) 0.10 Hz

9. Find the current of the following circuit.

- (A) 3.3 A
- (B) 4.4 A
- (C) 5.6 A
- (D) 6.7 A
- (E) 7.8 A


10. In the ⁴He atom, when the 3rd orbital electron jumps to the 1st orbit, what is the photon energy being emitted?

- (A) 44.2 eV
- (B) 48.4 eV
- (C) 52.3 eV
- (D) 54.1 eV
- (E) 60.6 eV

11. An engine does 15 kJ of work while exhausting 37 kJ to a cold reservoir. What is the efficiency of the engine?

- (A) 0.15
- (B) 0.29
- (C) 0.33
- (D) 0.45
- (E) 1.20

12. A gas undergoing a series of pressure and volume changes from a state (a) to state (b) by the following five paths. Which of the following paths requires the highest work for the changing?

13. The speed of a transverse wave on a string is 170 m/s when the string tension is 120 N. To what value must the tension be changed to raise the wave speed to 180 m/s?

- (A) 120 N
- (B) 125 N
- (C) 130 N
- (D) 135 N
- (E) 140 N

14. Which	of the following ab	errations is re	lated t	to the way	elength o	f light?		
(A)	spherical aberratio	on (B)	chron	natic abei	rration	(C) con	na	
(D)	astigmatism	(E)	distor	rtion				
	eal fluid flows the	_					_	_
Measu	rements would indic	cate that the s	um of	the kinet	ic energy	per unit vol	ume and	l pressure at
differe	nt sections of the pi	pe would		·				
(A)	decrease as the pip	e diameter in	crease	es				
(B)	increase as the pip	e diameter in	crease	S				
(C)	increase as the pip	e diameter de	crease	es				
(D)	decrease as the pip	oe diameter de	ecrease	es				
(E)	remain the same as	s the pipe dian	meter	changes				
16 A mains	: 4h		1:4					
•	t in the wave function	on where the a	ampını				_•	
(A)	the node	C		(B)			• ,•	
(C)	the amplitude of th	ie wave funct	10n	(D)	the frequ	ency of rad	iation	
(E)	none of the above							
17. For a h	eterogeneous cataly	zed reaction.	the re	action car	n be divid	ed into four	process	es:
	pe or desorption of						1	
	ction of the adsorbe	-						
	gration of the adsort		on the	surface o	of the cata	lvst.		
`	sorption and activati				or the cata	.,		
	s the correct order of							
	$I \rightarrow II \rightarrow III \rightarrow IV$	-		· III → II	→ I	(C) I →	$IV \rightarrow I$	ı → III
` '	$IV \rightarrow II \rightarrow III \rightarrow I$	` '		$II \rightarrow I \rightarrow$		(C) 1 7	1	1 / 111
(D)	1	. (L)	111 /	11 / 1 /	/ 1 V			
18. The bar	nd gap of the semico	nductor alum	inum j	phosphid	e (AlP) is 2	2.5 eV. What	color o	flight is emitted
by AlP	diode? $(1 \text{ eV} = 1.6)$	× 10 ⁻¹⁹ J; Plan	nck's o	constant:	6.626 × 10	$)^{-34} J \cdot s = 4.$	136 × 10	$0^{-15} \text{ eV} \cdot \text{s}$
(A)	`	orange		yellow	(D)		(E)	blue
()		C	()	J	()	C	()	
19. Which	radiation is applied	in nuclear ma	agnetic	e resonan	ce (NMR)	technique?		
(A)	X-ray (B)	ultraviolet	(C)	infrared	(D)	visible	(E)	radio wave
20 Which	of the following rea	nations is a div	gnrone	rtionatio	n reaction')		
	$HCl_{(aq)} + NaOH_{(aq)}$				ii icaciioii	<u>{</u>		
(A)				7 (1)				
(B)	$Cl_{2(aq)} + 2I^{-}_{(aq)} \rightarrow$			oEo				
(C)	$CaSiO_{3(s)} + 8HF_{(aq)}$				П 2 U (l)			
(D)	$AgNO_{3(aq)} + NaCl_{0}$	$(aq) \rightarrow AgCl(a)$	$_{aq)} + N$	aNO _{3(aq)}				

 $\begin{array}{ll} \text{(E)} & Cl_{2(aq)} + 2NaOH_{(aq)} \rightarrow & NaClO_{(aq)} + NaCl_{(aq)} + H_2O_{(l)} \end{array}$

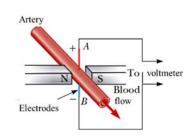
21.	Specify	the number	of unp	aired elect	rons in C	CoF ₆ ³⁻ (F ⁻ io	n is a w	eak fie	ld ligand).		
	(A)	0	(B)	1	(C)	2	(D)	4	(H	Ξ)	5
22.	the read of a so reaction (A)	etion in acidic plution contains. What is the $1.0 \times 10^{-1} \mathrm{M}$	condining F	tion as follo Se ²⁺ require entration of (B	ows: (Mr es 40.00 f the Fe ²⁺) $1.8 \times$	$mO_4^- + Fe^{2+}$ mL of a 0 in the original mD_4^- in the origi	\longrightarrow F 025 M nal solu	e ³⁺ + M KMn(tion?	In ²⁺) A 50 D4 solution	.00 n fo	mL sample or complete
23.	What is	s the number	of lone	e pairs of e	lectrons	in the NO ₂ -	ion?				
	(A)	4	(B)	5	(C)	6	(D)	7	(H	Ξ)	8
24.	CrO ₄ ²⁻	the precipita 10 ⁻¹⁰ . Which silver chloric silver chrom silver nitrate	tes are a of the de ate	obtained.	Given th	ne $K_{\rm sp}$ for Agreecipitate first	g2CrO4 i st?	_			
25.	2. The MnO4 ⁻ ion is often used to analyze the Fe ²⁺ concentration in an aqueous solution, based on the reaction in acidic condition as follows: (MnO4 ⁻ + Fe ²⁺ — Fe ³⁺ + Mn ²⁺) A 50.00 mL sample of a solution containing Fe ²⁺ requires 40.00 mL of a 0.025 M KMnO4 solution for complete reaction. What is the concentration of the Fe ²⁺ in the original solution? (A) 1.0 × 10 ⁻¹ M (B) 1.8 × 10 ⁻² M (C) 4.5 × 10 ⁻³ M (D) 1.8 × 10 ⁻³ M (E) 9.1 × 10 ⁻⁴ M 3. What is the number of lone pairs of electrons in the NO2 ⁻ ion? (A) 4 (B) 5 (C) 6 (D) 7 (E) 8 4. If you add 0.10 M silver nitrate dropwise to a solution consisting of 0.10 M Cl ⁻ and 0.10 M CrO4 ²⁻ , the precipitates are obtained. Given the K _{sp} for Ag ₂ CrO ₄ is 9.0 × 10 ⁻¹² and that for AgCl is 1.6 × 10 ⁻¹⁰ . Which of the followings will precipitate first? (A) silver chloride (B) silver chromate (C) silver nitrate (D) It cannot be determined by the information given.										
	elemen	t. What is this	s new	element?							
	(A)	Cd-112	(B)	Cd-109	(C)	Ag-108	(D)	Ag-1	09 (I	Ξ)	Ag-110
26.	$(\sigma_{2s})(\sigma_{2s})$	$(\sigma_{2p})(\sigma_{2p})(\pi_{2p})(\sigma_{$	π _{2p} *)(σ	52p*).							
27.	contain (A)	ing which ga		e largest ba	alloon?) He	C		(C)	Ne	s. T	The balloon
28.		-	n is often used to analyze the Fe^{2+} concentration in an aqueous solution, based on acidic condition as follows: $(MnO_4^- + Fe^{2+} \longrightarrow Fe^{3+} + Mn^{2+}) A 50.00 \text{ mL}$ sample containing Fe^{2+} requires 40.00 mL of a 0.025 M KMnO4 solution for complete t is the concentration of the Fe^{2+} in the original solution? 10^{-1} M (B) $1.8 \times 10^{-2} \text{ M}$ (C) $4.5 \times 10^{-3} \text{ M}$ 10^{-3} M (E) $9.1 \times 10^{-4} \text{ M}$ mber of lone pairs of electrons in the NO_2^- ion? (B) 5 (C) 6 (D) 7 (E) 8 10 M silver nitrate dropwise to a solution consisting of 0.10 M Cl ⁻ and 0.10 M ecipitates are obtained. Given the K_{9p} for Ag_2CrO_4 is 9.0×10^{-12} and that for $AgC1$ Which of the followings will precipitate first? chloride chromate nitrate not be determined by the information given. metal 106 nucleus is struck with an alpha particle, a proton is produced along with a new t is this new element? 2 (B) $Cd-109$ (C) $Ag-108$ (D) $Ag-109$ (E) $Ag-110$ paired electrons are present in the F_2^{2+} ion? The order of the molecular orbitals is $10(\pi_{2p})(\pi_{2p}$								

(B) ABC_3 (C) ABC_6 (D) A_8BC_6

(E) A_4BC_3

the unit cell?
(A) ABC

29. Amon	g the following	_		which o	one has the s	mallest	bond energy	y?	
(A)	C–C	(B)	C–O	(C)	C–S	(D)	C-C1	(E)	C–F
	n of the follonermic decom addition of increase in	positio He _(g)	n reaction as (B)	s follow remo	-	$ \begin{array}{c} $	$I_{4(g)} + 3CO_{(g)}$ (C) addit)	
【單選題	[] 每題2分 不給分亦				倒扣 0.5 分 ,61~90 題			分為止	,未作答,
	average power in 95 min? (0	_	•	_			who climbs a	a summ	it of height
(A)	25 W	(B)	40 W	(C)	55 W	(D)	65 W	(E)	80 W
taking	eball flies from 3 seconds, witational accel	hat is t	he horizonta	l displa	_				_
(A)	14 m	(B)	28 m	(C)	42 m	(D)	56 m	(E)	70 m
coeffi	ld uses a horicient of kineti	c fricti	on between t	the box	and the table	•			
(A)	0.25 J	(B)	0.50 J	(C)	2.5 J	(D)	5.0 J	(E)	10 J
with a	tically hanging diameter of 0 lowing the contact itational accel	.5 m. T	The flywheel nwind, what $g = 10 \text{ m/s}^2$'s rotati is the a	onal inertia in one of the contraction of the contr	is 1.0 kg	g·m². Upon lock?		_
(A)	2 m/s^2	(B)	3 m/s^2	(C)	4 m/s^2	(D)	5 m/s^2	(E)	6 m/s^2
speed relativ	et weighing 1 of v_0 . The street to point P in velocity is 5	ick is is 0.05	suspended a	t point en the	P. The rota bullet first e	tional i	nertia of the	e stick	30° vo.
(A)	7 m/s	(B)	10 m/s	(C)	15 m/s	(D)	30 m/s	(E)	40 m/s

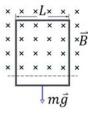

36. A frictionless curve of radius 500 m is banked with a banking angle $\theta = 30^{\circ}$. A ball of mass m =

- 10 kg and radius r = 50 cm is moving on it. What angular velocity is needed for the ball moving on the curve without need of frictional force? (Gravitational acceleration $g = 10 \text{ m/s}^2$) (tan 30° = 0.577) 214.8 rad/s (A) 53.7 rad/s (B) 107.4 rad/s (C) (D) 332.2 rad/s (E) 429.6 rad/s 37. A thin rod of length 100 cm and mass 6 kg with the rotation axis through its center. The rod rotates and accelerates to an angular velocity of 100 rad/s uniformly from rest over a 10 seconds interval. Find the torque to the rod (kg · m²/s²)? (A) 5 (B) 10 (E) 25 (C) 15 (D) 20 38. A gun fired vertically and hits a wooden block and stops inside. The bullet and block have a mass of 0.1 and 0.5 kg, respectively. The velocity of bullet is 100 m/s. How high will the wooden block be raised? (Gravitational acceleration $g = 10 \text{ m/s}^2$) (A) 8 m (B) 10 m(C) 12 m (D) 14 m (E) 16 m 39. One particle of mass $M = 0.5 \times 10^{-9}$ kg and velocity $V = 4 \times 10^5$ m/s directly hits the other particle of mass $m = 0.1 \times 10^{-9}$ kg and velocity v = 0 m/s. Find the maximum energy transfer from one particle to the other? (C) 29 J (A) 15 J (B) 22 J (D) 36 J (E) 43 J 40. If two springs with spring constants k and 3k respectively are connected in series and attached to an object with mass m, what is the oscillation frequency of the springs? (A) $\sqrt{k/m}$ (B) $\sqrt{3k/4m}$ (C) $\sqrt{3k/m/2\pi}$ (E) $\sqrt{3k/4m}/2\pi$ (D) $\sqrt{k/m}/2\pi$ 41. An electronics technician wishes to construct a parallel plate capacitor using rutile ($\kappa = 100$) as the dielectric. The area of the plates is 1.0 cm². What is the capacitance if the rutile thickness is 1.0 mm? (permeability constant $\mu_0 = 8.85 \times 10^{-12} \text{ C}^2/\text{N} \cdot \text{m}^2$) (A) 88.5 pF (B) 177 pF (C) $8.85 \mu F$ (D) $35.4 \,\mu\text{F}$ $100 \mu F$ (E) 42. Two conducting wires A and B of the same length and radius are connected across the same
 - (A) 2 (B) $\sqrt{2}$ (C) 1 (D) $1/\sqrt{2}$ (E) $\frac{1}{2}$

power delivered to A to the power delivered to B?

potential difference. Conductor A has twice the resistivity of conductor B. What is the ratio of the

43. A heart surgeon monitors the flow rate of blood through an artery using an electromagnetic flowmeter as shown in the figure. Electrodes A and B make contact with the outer surface of the blood vessel, which has a diameter of 3.0 mm. For a magnetic field magnitude of 0.04 T, an *emf* of $160 \,\mu\text{V}$ appears between the electrodes. Calculate the speed of the blood.



- (A) 1.33 m/s
- (B) 2.33 m/s
- (C) 3.66 m/s
- (D) 4.66 m/s
- (E) 6.66 m/s

44. A rectangular coil with 1000 turns has a length and width of 10 cm and 20 cm respectively and carries a counterclockwise current of 10 A. When the magnetic dipole moment makes an angle of 60° with a magnetic field of 0.5 T, what is its potential energy?

- (A) -50 J
- (B) -87 J
- (C) -100 J
- (D) 50 J
- (E) 100 J

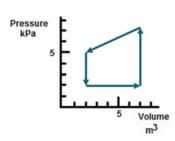
45. A rectangular conductor coil has width L = 10 cm, resistance $R = 0.3 \Omega$, and mass m = 100 g. Ignoring the air drag, when the coil falls in a uniform magnetic field B = 10 T, the final terminal velocity value of the coil is: (Gravitational acceleration $g = 10 \text{ m/s}^2$)

- (A) 0.3 m/s
- (B) 0.5 m/s
- (C) 0.7 m/s
- (D) 3.0 m/s
- (E) 5.0 m/s

46. A 5 μ F capacitor is linked to an electromotive force experiencing uniform increment at a rate of 100 V/s over time. The displacement current between the plates is:

- $(A) \quad 0$
- (B) 5 A
- (C) $5 \times 10^{-2} \text{ A}$
- (D) $5 \times 10^{-4} \text{ A}$
- (E) $5 \times 10^{-6} \text{ A}$

47. In a certain cyclotron a proton moves in a circle of radius 0.50 m. The magnitude of the magnetic field is 1.20 T. What is the oscillator frequency? (The mass of proton $m_p = 1.67 \times 10^{-27} \text{ kg}$)

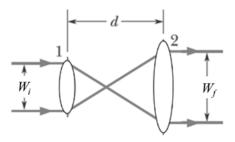

- (A) $1.83 \times 10^7 \text{ Hz}$
- (B) $2.53 \times 10^7 \text{ Hz}$
- (C) $3.62 \times 10^7 \text{ Hz}$

- (D) $4.71 \times 10^7 \text{ Hz}$
- (E) $5.83 \times 10^7 \text{ Hz}$

48. A gas is at 200 K. If we wish to double the root mean square speed (v_{rms}) of the molecules of the gas, to what value must we raise its temperature?

- (A) 283 K
- (B) 400 K
- (C) 500 K
- (D) 600 K
- (E) 800 K

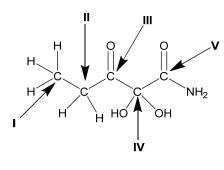
49. In the figure, a gas enclosed within a sealed chamber follows a closed path as illustrated. What is the total amount of work performed by the gas?


- (A) +40 J
- (B) +20 J
- (C) 0 J
- (D) -20 J
- (E) -40 J

50. When a fixed pressure of one atmosphere is maintained, an ideal gas receives 25 J of energy in the form of heat. During this process, the gas's volume expands from 20 cm³ to 40 cm³. What is the molar specific heat of this ideal gas?

(The universal gas constant $R = 8.31 \text{ J/mol} \cdot \text{K}$, 1 atm = $1.01 \times 10^5 \text{ Pa}$)

- (A) 80 J/mol·K (B) 85 J/mol·K (C) 90 J/mol·K (D) 95 J/mol·K (E) 100 J/mol·K
- 51. Two objects with temperatures T1 and T2 (T2 = 2T1) are isolated from their surroundings. A small amount of heat Q is transferred without changing their temperatures. What is the total entropy change of the two objects?
 - (A) $(1/2) \cdot (Q/T1)$
- (B) $(3/2) \cdot (Q/T1)$
- (C) $(1/3) \cdot (Q/T2)$


- (D) $(2/3) \cdot (Q/T2)$
- (E) $(1/4) \cdot (Q/T2)$
- 52. The figure shows the configuration of a beam-expander (5x) formed by two positive lenses with focal lengthes f_1 and f_2 . The distance between two lens is 12 cm. W_i and W_f denote the input and output laser beam diameters, respectively. What is the laser focal point in the system?

- (A) 2.0 cm away from the input lens
- (B) 4.0 cm away from the input lens
- (C) 6.0 cm away from the input lens
- (D) 8.0 cm away from the input lens
- (E) 10.0 cm away from the input lens
- 53. A police car with a 500 Hz siren is moving at 20 m/s. What is the total frequency change when the police car is approaching and then leaving the listener? (sound speed in the air is 344 m/s)
 - (A) 32 Hz
- (B) 36 Hz
- (C) 48 Hz
- (D) 52 Hz
- (E) 58 Hz
- 54. A doppler flow meter transmit ultrasound of 10 MHz to measure the blood flow. If the reflected sound of 9.9 MHz is recorded by the same probe, find the speed of the blood flow. (sound speed in the tissue is 1500 m/s)
 - (A) 5.5 m/s
- (B) 6.5 m/s
- (C) 7.5 m/s
- (D) 8.5 m/s
- (E) 9.5 m/s
- 55. Thin film coating is a technique for anti-reflection. How thick a thin film with the refractive index of 1.25 should be coated on a glass surface (n=1.5) to eliminate the reflection for the wavelength of 600 nm? Only consider normal incidence.
 - (A) 120 nm
- (B) 150 nm
- (C) 300 nm
- (D) 500 nm
- (E) 600 nm
- 56. An acrylic cube with a volume of 8 cm³ registers a weight of 40 g on a spring scale calibrated in grams. If the same object is weighed while submerged in a liquid with a density of 4 g/cm³, what reading will the scale display?
 - (A) 8 g
- (B) 16 g
- (C) 24 g
- (D) 32 g
- (E) 40 g

- 57. The net nuclear fusion reaction inside the Sun can be written as $4^{1}H \rightarrow {}^{4}He + E$. The rest energy of each hydrogen atom is 938.8 MeV, and the rest energy of the helium-4 atom is 3728.4 MeV. Calculate the percentage of the starting mass that is transformed to other forms of energy.
 - (A) 0.11 %
- (B) 0.31 %
- (C) 0.51 %
- (D) 0.71 %
- (E) 0.91 %
- 58. In Bohr's hydrogen theorem, find the ratio of the longest wavelength between Balmer's and Paschen's series? (Balmer/Paschen)
 - (A) 0.35
- (B) 0.40
- (C) 0.45
- (D) 0.50
- (E) 0.55
- 59. How fast is needed for an O_2 ⁺ ion to move in a circular orbit of radius 5 m in a magnetic field of 0.5 Tesla? (1 u = 1.66 × 10⁻²⁷ kg)
 - (A) $3.8 \times 10^5 \,\text{m/s}$
- (B) $4.1 \times 10^5 \,\text{m/s}$
- (C) $5.2 \times 10^5 \,\text{m/s}$

- (D) $7.5 \times 10^6 \,\text{m/s}$
- (E) $8.9 \times 10^6 \,\text{m/s}$
- 60. A spacecraft is flying towards Earth at a speed of 0.7 c. When it is 8 light-years away from Earth, it sends a message to Earth at a speed of 0.5 c (relative to the spacecraft). How long will it take for Earth to receive this message?
 - (A) 5 years
- (B) 6 years
- (C) 7 years
- (D) 8 years
- (E) 9 years
- 61. Which of the following carbon atoms exhibits an oxidation state of +3?

- (A) I
- (B) II
- (C) III
- (D) IV
- E) V
- 62. Given the electron configuration of an element X is $[Ar]3d^{10}4s^24p^3$. What is the formula for the chloride of X most likely to be?
 - (A) XCl
- (B) XCl₂
- (C) XCl₃
- (D) XCl₄
- (E) XCl₆
- 63. How much energy is needed to convert 100 g of ice at 0°C to water at 50°C?

specific heat capacity (ice) = $2.10 \text{ J/g} \cdot {}^{\circ}\text{C}$;

specific heat capacity (water) = $4.18 \text{ J/g} \cdot {}^{\circ}\text{C}$;

heat of fusion = 333 J/g;

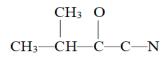
heat of vaporization = 2258 J/g

- (A) 10.1 kJ
- (B) 20.7 kJ
- (C) 31.4 kJ
- (D) 54.2 kJ
- (E) 65.8 kJ

64.			_			-		-			
	(A)	0.158 M	(B)	0.315 M	(C)	0.630 M	(D)	1.580	M	(E)	3.15 M
65.			vings	is not neces	ssary fo	or protein sy	nthesis	at the	stage	of pe	ptide bonds
	(A) (D)	amino acids tRNA		(B) (E)				(C)	DNA		
66.						_				_	_
	for san	ne volume of	heliun	n to pass thro	ough th	e same hole?	$(CH_4=$	16 g/n	nol; He=	=4 g/r	nol)
	(A)	12 s	(B)	24 s	(C)	48 s	(D)	96 s		(E)	192 s
67.) secon	ds. Ho	w much	ı time	e is required
							(D)	120 s	econds	(E)	210 seconds
68.	Which	of the follow:	ing tre	ends is inco r	rect?						
	(A)	atom size: L	i < Na	$1 < K < C_S$		(B) io	n size:	Ca ²⁺ <	$K^+ < C$	21- < 5	S^{2-}
	(C)	electronegat	ivitv:	I < Br < Cl <	< F	(D) bo	oiling p	oint: H	I ₂ O < H	2S < 1	H ₂ Se < H ₂ Te
	(E)	C	•				81				
69.	At 27%	C, an ideal g	as wit	h a mass of	0.4 g	in 100 mL h	as a pr	essure	of 0.3	atm.	What is the
	5. Which of the followings is not necessary for protein synthesis at the stage of peptide bonds formation? (A) amino acids (B) mRNA (C) DNA (D) tRNA (E) ribosomes 6. Give the effusion time of 250 mL of methane through a small hole is 48 s. How long will it require for same volume of helium to pass through the same hole? (CH ₄ =16 g/mol; He=4 g/mol) (A) 12 s (B) 24 s (C) 48 s (D) 96 s (E) 192 s 7. Given the second half-life for a second order reaction is 60 seconds. How much time is required for 87.5% reactant to be consumed in this reaction? (A) 30 seconds (B) 60 seconds (C) 90 seconds (D) 120 seconds (E) 210 seconds (E) Which of the following trends is incorrect ? (A) atom size: Li < Na < K < Cs (B) ion size: Ca ²⁺ < K ⁺ < Cl ⁻ < S ²⁻ (C) electronegativity: I < Br < Cl < F (D) boiling point: H ₂ O < H ₂ S < H ₂ Se < H ₂ Te										
	(A)	328	(B)	246	(C)	133	(D)	120		(E)	30
70.											_
					is the a	ctivation ener	rgy for	this re	action in	n kJ/r	nol?
	(R=8.	31 J/mol·K; 1	n10 =	2.30)							
	(A)	45.6	(B)	23.0	(C)	18.3	(D)	12.7		(E)	5.0
71.	Below	reaction was	studie	d at –10°C a	nd the	following res	ults we	ere obta	ained.		
	$2NO_{(g)}$	$+ Cl_{2(g)} \rightarrow 2N$	IOC1(g)							
	Consid	ering the rate	law o	f this reaction	on, wha	t's the unit of	f the ra	te cons	tant?		
	(A)	$(\text{mol/L})^2 \cdot \text{m}$	in ⁻¹	(B)	(mol	$(L)^1 \cdot min^{-1}$		(C)	(mol/L	$(a)^0 \cdot m$	in ⁻¹

(E) $(\text{mol/L})^{-2} \cdot \text{min}^{-1}$

(D) $(\text{mol/L})^{-1} \cdot \text{min}^{-1}$


70	TT 71 ' 1	C .1	C 11	•		•	40
'''	W/hich	of the	talla	MIMI	statements	10	correct'
14.	VV 111C11	or the	TOTIC	/ W 111 Z	statements	19	COLLCCL

- (A) Arrhenius postulated that an acid is a proton (H⁺) donor, and a base is a proton acceptor.
- (B) A buffer with a large capacity contains large volumes of the buffering components.
- (C) For the titrations of weak acids with strong bases, the greater pH value at the equivalence point is obtained when the stronger acid is used.
- (D) For a particular buffering system, all solutions that have the same ratio of [A⁻]/[HA] have the same pH value.
- (E) An acid-base indicator can be used to determine the equivalence point of an acid-base titration because of its ability to mark the half-equivalence point of a titration by changing color.

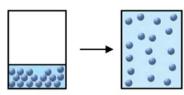
73	At a certain temperature, placing one mole of ammonia gas into a sealed container results in 40%
	ammonia decomposition at equilibrium. What is the equilibrium constant KC for ammonia
	decomposition at that temperature? (ammonia decomposition: $2NH_{3(g)} \rightarrow N_{2(g)} + 3H_{2(g)}$)

- (A) 0.043
- (B) 0.12
- (C) 0.80
- (D) 8.33
- (E) 17

74. Complete the Lewis structure for the molecular formula (C₅H₇ON) below.

This molecule has _____ single bonds, ____ multiple bonds and ____ sp² hybridized atoms.

- (A) 4, 2, 2
- (B) 4, 2, 4
- (C) 11, 2, 2
- (D) 11, 2, 4
- (E) 11, 5, 4


75. A product is electroplated by copper from CuSO₄ solution. A constant current of 9.65 amp is applied by an external power supply. How long will it take to deposit 6.35×10^2 g of Cu onto the surface of product? (Cu = 63.5 g/mol) (1F = 96485 C/mol)

- (A) 14.22 s
- (B) 8.9 min
- (C) 2.54 h
- (D) 55.5 h
- (E) 1.37 days

76. An unknown compound is cooled at 1 atm, and it freezes at 50.0 K to form Solid I. At a lower temperature, Solid I rearranges to Solid II, which has a different crystal structure. Thermal measurements show that ΔH an ΔS for the I \rightarrow II phase transition are -700.0 J/mol and -20.0 J/K mol, respectively. What is the temperature of Solids I and II in equilibrium?

- (A) 13.6 K
- (B) 19.8 K
- (C) 35.0 K
- (D) 59.8 K
- (E) 98.2 K

77. What are the signs (+, -, or 0) of ΔH , ΔS , and ΔG for the spontaneous vaporization of a liquid to a vapor?

- (A) $(\Delta H, \Delta S, \Delta G) = (+, +, +)$
- (B) $(\Delta H, \Delta S, \Delta G) = (+, -, +)$
- (C) $(\Delta H, \Delta S, \Delta G) = (0, 0, 0)$
- (D) $(\Delta H, \Delta S, \Delta G) = (+, +, -)$
- (E) $(\Delta H, \Delta S, \Delta G) = (-, -, -)$

78. The reduction potentials for Au³⁺ and Cr³⁺ are as follows:

$$Au^{3+} + 3e^- \rightarrow Au$$
, $\varepsilon^{\circ} = +1.50 \text{ V}$

$$\mathrm{Cr}^{3+} + \mathrm{e}^{-} \rightarrow \mathrm{Cr}^{2+}, \, \varepsilon^{\circ} = -0.50 \mathrm{\ V}$$

Calculate ΔG° (at 25°C) for the reaction:

 $Au^{3+} + 3Cr^{2+} \rightarrow 3Cr^{3+} + Au$

- (A) $-7.37 \times 10^2 \text{ kJ}$
- (B) $-5.79 \times 10^2 \text{ kJ}$
- (C) $-1.6 \times 10^2 \text{ kJ}$

- (D) $7.37 \times 10^2 \text{ kJ}$
- (E) $10 \times 10^2 \text{ kJ}$

79. How many different structures do SeCl4, CBr4, KrF4, CH4, and TeF4 have?

- (A) 1
- (B) 2
- (C) 3
- (D) 4
- (E) 5

80. A weak acid HA is dissolved in enough water to prepare an acidic solution. The pH value and osmotic pressure of resulting solution at 27°C are 6 and 0.246 atm, respectively. What is the Ka of HA? ($R = 0.082 \text{ L} \cdot \text{atm/K} \cdot \text{mol}$; assuming Van't Hoff factor = 1)

- (A) 1.00×10^{-10} (B) 2.30×10^{-10} (C) 1.10×10^{-9} (D) 6.10×10^{-9} (E) 5.80×10^{-8}

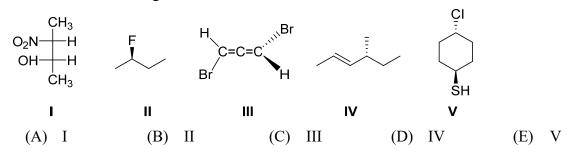
81. The pH of a bottle of vinegar is 2.75 at 25°C. What is the mass percentage concentration (w/w) of acetic acid in this vinegar, assuming no other acid is presented?

(K_a of acetic acid: 1.8×10^{-5} ; pK_a of acetic acid: 4.74; $10^{-2.75} = 0.0018$; $10^{2.75} = 562.3$; assuming the density of vinegar = 1 g/cm³; CH₃COOH=60 g/mol)

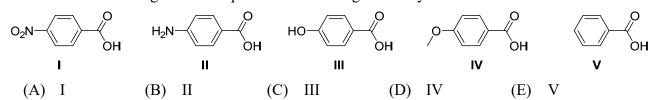
- (A) 5.0%
- (B) 4.0%
- (C) 3.0%
- (D) 2.0%
- (E) 1.0%

82. Which of the following complexes can exhibit optical isomerism? (en = $H_2N-CH_2-CH_2-NH_2$)

- (A) cis-Co(NH₃)₄Cl₂
- (B) trans-Co(en)₂Br₂
- (C) cis-Co(en)₂Cl₂


- (D) $Co(NH_3)_3Cl_3$
- (E) none of these

83. A compound has a formula of [Pt(PPh₃)₂(NCS)₂]. How many isomers does this compound have?


- (A) 2
- (B) 3
- (C) 4
- (D) 5
- (E) 6

- 84. Aluminum (Al) metal crystallizes in a face-centered cubic structure. The relationship between the radius r of an Al atom and the length of an edge E of the unit cell is

 - (A) r = 0.354E (B) r = 0.433E (C) r = 0.5E
- (D) r = 2E
- (E) r = 4E
- 85. Which of the following statements correctly describes the signs of q (heat) and w (work) for the following exothermic process at P = 1 atm and T = 370 K? $H_2O_{(g)} \longrightarrow H_2O_{(1)}$
 - The q and w are both negative.
- (B) The q is positive, but the w is negative.
- (C) The q and w are both positive.
- (D) The q is negative, but the w is positive.
- (E) The q and w are both zero.
- 86. Carminic acid, a naturally occurring red pigment extracted from the cochineal insect, contains 53.66% C, 4.09% H and 42.25% O by mass. A titration required 10.00 mL of 0.5 M NaOH to neutralize 2.46 g carminic acid. Assuming there is only one acidic hydrogen per molecule, what is the empirical formula and molecular formula of carminic acid? (Na = 23.0 g/mole)
 - empirical formula: C₂₂H₂₀O₁₃; molecular formula: C₄₄H₄₀O₂₆
 - (B) empirical formula: C₂₂H₂₀O₁₃; molecular formula: C₂₂H₂₀O₁₃
 - empirical formula: C₄₄H₄₀O₂₆; molecular formula: C₂₂H₂₀O₁₃
 - empirical formula: C₂₆H₂₀O₁₀; molecular formula: C₂₆H₂₀O₁₀ (D)
 - (E) empirical formula: C₂₆H₂₀O₁₀; molecular formula: C₅₂H₄₀O₂₀
- 87. Biphenyl (C₁₂H₁₀) is an organic molecule formed by connecting two benzene rings via single bond. Which of the following statements about biphenyl molecules is **incorrect**?
 - Benzene is an aromatic compound.
 - The molecular structure has twelve carbon atoms in a coplanar fashion.
 - The molecular structure has five hydrogen atoms in a coplanar fashion. (C)
 - (D) The molecule has a total of six double bonds.
 - (E) The molecular hybridization in this molecule are the same as graphite.
- 88. Which of the following molecules is achiral?

89. Which of the following molecules possesses the strongest acidity?

90. What monomer(s) is/are needed to synthesize the polymer shown below?

- I. HOCH2CH2OH
- II. HOOCCH2CH2COOH
- III. HOCH2CH2COOH

- IV. HOCH=CHOH
- V. HOOCCH=CHCOOH

- (A) II
- (B) III
- (C) I and II
- (D) IV and V
- (E) II and III

後醫-英文

題號	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
答案	A	Е	Е	D	D	Е	В	Е	Е	В	D	A	С	D	Е	Е	Е	В	С	A
題號	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
答案	Е	С	С	D	В	Е	С	С	В	С	Α	С	В	D	С	Е	В	В	C	Е
題號	41	42	43	44	45	46	47	48	49	50										
答案	A	D	С	Α	В	Α	В	С	D	Α										

後醫-物理及化學

西時	1	0	2	4	_		7	0	Ο	1.0	1 1	10	10	1./	1 7	1.0	17	1.0	10	20
題號	1	2	3	4)	б	/	8	9	10	11	12	13	14	15	16	1/	18	19	20
答案	Е	D	Е	В	D	В	C	D	C	В	В	В	D	В	Е	Α	В	D	Е	Е
題號	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
答案	D	Α	С	Α	D	C	Α	В	С	D	В	C	С	D	С	В	Α	D	В	Е
題號	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
答案	Α	Е	Α	A	A	D	Α	Е	D	D	Α	Α	Е	С	Α	A	D	Α	D	Е
題號	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
答案	Е	C	D	В	C	В	Е	D	Α	В	Е	D	В	C	D	C	D	В	C	Α
題號	81	82	83	84	85	86	87	88	89	90										
答案	Е	С	Е	Α	D	В	В	Е	A	С										

後醫-普通生物及生化概論

題號	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
答案	D	A	С	D	В	В	D	С	A	В	Е	В	С	В	С	Α	D	Е	В	Α
題號	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
答案	Е	D	Α	В	С	D	Α	Α	Е	В	A	D	Е	Α	С	Е	A	D	В	Α
題號	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
答案	С	Е	D	Е	В	С	С	В	A	В	D	С	D	Α	Е	С	В	D	A	Е
題號	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
答案	Е	D	C	Е	A	C	Е	В	A	D	Α	C	С	В	Е	D	В	С	В	C
題號	81	82	83	84	85	86	87	88	89	90										
答案	D	A	В	С	С	В	В	В	D	С										

後醫-計算機概論與程式設計

題號	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
答案	Е	D	Е	Е	Е	В	A	C	D	Е	В	С	Α	C	A	C	В	В	D	Α
題號	21	22	23	24	25	26	27	28	29	30										
答案	В	D	С	Α	D	Е	С	A	D	В										