代號:28560 頁次:2-1

114年公務人員高等考試三級考試試題

類 科:化學工程

科 目:物理化學(包括化工熱力學、動力學)

考試時間:2小時 座號:

※注意:(一)可以使用電子計算器。

(二)不必抄題,作答時請將試題題號及答案依照順序寫在試卷上,於本試題上作答者,不予計分。

(三)本科目除專門名詞或數理公式外,應使用本國文字作答。

- 一、苯的正常沸點為 353.24 K,且液態苯在 25°C時的蒸氣壓為 1.47×10⁴ Pa。 另已知苯的熔化熱(enthalpy of fusion)為 9.95 kJ mol⁻¹,而固態苯 在-40°C時的蒸氣壓為 203 Pa。假設汽化熱與昇華熱不隨溫度而變,試估 算:
 - (→) 苯的汽化熱 (enthalpy of vaporization)。(7分)
 - □ 苯的汽化熵 (entropy of vaporization)。(5分)
 - (三) 苯的昇華熱 (enthalpy of sublimation)。(4分)
 - 四苯的三相點(triple point)温度與壓力。(10分)

提示:克勞修斯-克拉伯隆方程式(Clausius-Clapeyron equation):

$$\frac{d(lnP)}{dT} = \frac{\Delta H}{RT^2}$$

二、有一可逆化學反應式如下:

$$A_{(aq)} \xrightarrow{\stackrel{k_1}{\longleftarrow}} B_{(aq)}$$

已知正反應速率常數 (k_1) 為 $2(min^{-1})$,逆反應速率常數 (k_2) 為 $1(min^{-1})$ 。 初始時,A 的濃度為 1.0 M,且 B 的濃度亦為 1.0 M,反應溫度維持在 298 K。試回答下列問題:

- (-)寫出只以A的濃度 (C_A) 為參數的反應速率定律式 (rate law),並推導出 (C_A) 隨時間 (t) 變化的函數。(16 分)
- 二計算 298 K 時反應的平衡常數 (K)、標準吉布士能(standard Gibbs energy, ΔG^0)與平衡時的 $C_A \circ (9 分)$
- \Box B 的濃度增加到 $1.2 \, \mathrm{M}$ 所需要的時間為何?又此時的反應吉布士能 (ΔG) 為何? $(10 \, \mathcal{G})$
- 四若 333 K 時,該反應平衡常數為 1.8,且假設 298~333 K 的反應熱 (enthalpy of reaction)為定值,試求反應熱。(8分)

- 三、電子可用來測定晶體表面的結構。為了產生繞射,電子的波長應該要與晶格常數 (lattice constant) 在同一個數量級,而晶格常數一般約為 3 Å。試計算這樣的電子具有多少電子伏特 (eV) 的能量?已知普朗克常數 (Planck constant) 為 6.626×10^{-34} Js; 一個電子質量為 9.109×10^{-31} kg; 一個電子電量為 1.602×10^{-19} C; 1 Å= 10^{-10} m。(7分)
- 四、全釩氧化還原液流電池 (VRFB) 是具有潛力的儲能系統,與其相關的反應物質在 298 K 的標準生成吉布士能 (ΔG_f^0) 如表一。另外,以下為三個與釩 (V) 相關的半反應方程式與其標準還原電位 (standard reduction potentials, E^0),其中式(1)與式(3)為 VRFB 電池兩極主要半反應。

式(1)
$$VO_2^+ + 2H^+ + e^- \rightleftharpoons VO^{2+} + H_2O$$
 $E^0 = ?$ V

式(2)
$$VO^{2+} + 2H^{+} + e^{-} \rightleftharpoons V^{3+} + H_2O$$
 $E^{0} = 0.337 V$

式(3)
$$V^{3+} + e^{-} \rightleftharpoons V^{2+}$$
 $E^{0} = -0.255 V$

表一 298 K 的標準生成吉布士能(standard Gibbs energy of formation)						
物質	VO^{2+}	VO_2^+	V^{2+}	V^{3+}	$H^{\scriptscriptstyle +}$	H_2O
$\Delta G_f^0(k J mol^{-1})$	-446.4	-587.0	?	?	0	-237.1

上述資料待補齊,且已知法拉第常數 (Faraday constant)為 96485 C mol⁻¹, 試回答下列問題: (每小題 12 分,共 24 分)

- (-)將資料有缺處補齊,亦即計算出式(1)的標準還原電位 (E^0) 、 V^{2+} 的 ΔG_f^0 與 V^{3+} 的 ΔG_f^0 。
- 二寫出該電池在 298 K 下的全反應電動勢 (E) 之能斯特方程式 (Nernst equation),形式為 $E = A B \times \log\{Q\} + C \times pH$,其中 E 的單位為伏特 (V);必須求出 $A \times B$ 和 C 的值,且 $A > 0 \times B > 0$,C 未限制正負; Q 為各物質活性的關係。