97年公務人員特種考試警察人員考試及 97年公務人員特種考試關務人員考試 代號:50770 (正面)

等 別:三等考試 類 科:化學工程

科 目:物理化學(包括化工熱力學)

考試時間:2小時 座號:

※注意:(一)可以使用電子計算器。

(二)不必抄題,作答時請將試題題號及答案依照順序寫在試卷上,於本試題上作答者,不予計分。

- 一、一個質量 m 的粒子,在邊長為 d 的立方盒子作平移運動,其能量為量子化, n = 1, 2, 3, …為量子數
 - (一)其能量(E_n)為何?(4分)
 - \Box 其相鄰兩能階的能階間距 (adjacent spacing) ΔE 為何? (4分)
 - (三)當質量 m 增大,則鄰近二能階的間距 ΔE 變寬或變窄? (4分)
 - 四當盒子體積 $V(=d^3)$ 增大,則鄰近二能階的間距 ΔE 變寬或變窄?(4分)
- 二、一從總體(global)(或宇宙導向(Universe-oriented))的觀點,寫出熱力學第二 定律的數學式(4分)
 - 仁)從局部(local)(或體系導向(system-oriented))的觀點,寫出熱力學第二定律的數學式(5分)
- 三、一寫出將熵 S (entropy) 連結到微狀態總數 W (number of microstate) 的波茲曼方程式 (Boltzmann equation) ? (5分)
 - 口將 n_A 莫耳的理想 A 氣體,(其體積 V 而分壓為 P_A)與 n_B 莫耳的理想 B 氣體(其體積 V 而分壓為 P_B),在定溫下混合,形成(n_A+n_B)莫耳的 A+B 混合物,(其壓力為 P_A+P_B ,但體積仍為 V),試問混合熵 $\Delta S_{mix}=?$ (5 分)
 - (三)用波茲曼方程式解釋(二)的結果? (5分)
- 四、1 莫耳理想氣體,遵守 PV=RT 之狀態方程式(P= 壓力,V= 體積,R= 氣體常數, T= 絕對溫度),從溫度 T_1 ,體積 V_1 ,壓力 P_1 起點(T_1 , V_1 , P_1),經絕熱可逆膨脹 (adiabatic reversible expansion) 到溫度 T_2 ,體積 V_2 ,壓力 P_2 的終點(T_2 , V_2 , P_2)(其中 $V_2 > V_1$),求:
 - (-) 體系的熵(system entropy) ΔS_{sys} =?(5 分)
 - (二) 周界的熵(surrounding entropy) $\Delta S_{surr} = ?$ (5分)
 - (三)總熵(total entropy) $\Delta S_t = ?$ (5分)
- 五、計算 $H_2O(1,100^{\circ}C,1 \text{ bar}) = H_2O(g,100^{\circ}C,1 \text{ bar})$ 之 $\Delta G_m^{0} = ?(J/mol)(5 分)$

97 年公務人員特種考試警察人員考試及 97 年公務人員特種考試關務人員考試 代號:50770 (背面)

等 別:三等考試 類 科:化學工程

科 目:物理化學(包括化工熱力學)

六、在淨功 =0,即 $\mathbf{W}_{net}=0$ 條件下,對於下列氣相的化學反應:

 $a A_{(g)} + b B_{(g)} = r R_{(g)} + s S_{(g)}$

- (一)在那種總體準則 (global criteria) 下,反應可自然發生? (5分)
- 口在溫度固定(T = constant),壓力固定(P = constant)下,在那種局部準則(local criteria)下,反應可自然發生?(5分)
- (三在溫度固定(T = constant),體積固定(V = constant)下,在那種局部準則 (local criteria)下,反應可自然發生?(5 分)
- 七、阿倫尼亞斯方程式 $k = A_1 e^{-E_a/RT}$ (Arrhenius equation) (其中k = 速率常數, $A_1 =$ 碰撞頻率因子 (collision frequency factor) 或指數前項因子 (pre-exponential factor),R = 氣體常數,T = 絕對溫度, $E_a =$ 活化能)
 - (一)解釋何謂活化能(E_a)=?(4分)
 - (二)解釋 $e^{-E_{a/RT}}$ 的物理意義? (4分)
 - (三)溫度 T 固定,在體積 V 內, N_A 個質量 m_A ,半徑 r_A ,其平均速度 \overline{u}_A 的 A 氣體與 N_B 個質量 m_B ,半徑 r_B ,其平均速度 \overline{u}_B 的 B 氣體碰撞,求碰撞頻率因子 A_1 = ? (8分)
- 八、一化學反應,其速率常數在30℃為20℃的兩倍,求活化能為多少? (9分)