臺灣警察專科學校專科警員班第27期正期學生組新生入學考試乙組數學科試題

		4 11 4 12 4 11 12 7		<i>///</i>	, , , , , , , , , , , , , , , , , , ,	•
壹	、單選題	:(一)三十題,題號自	第1題至第30	題,每題二分,計六	十分。	
		(二)未作答者不給分	〉,答錯者倒扣註	亥題分數四分之一。		
		(三)請將正確答案以	人2B鉛筆劃記が	◇答案卡內。		
1.	已知 <i>a</i> ≠		` '	- ` ′ ′	$+1)y=5$,若當 L_1 與 L_2 垂直時	, a = ?
	(A) - 1	(B)—·	$\frac{1}{2}$	(C)-2	(D) $-\frac{3}{2}$ °	

2.	數列 $< a_n >$ 满足 $a_1 = 2$,	$a_{n+1} = -\frac{1}{2}a_n$	$(n$ 為自然數),求 $\sum_{k=1}^{\infty}a_{k}=?$			
	$(A)^{\frac{4}{-}}$	$(B) - \frac{4}{3}$	(C) 4	(D)-4	0	

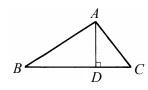
3. 設 n 為自然數,且 $1+2+4+8+...+2^n=2047$,則 n=?(D) 12 ° (B) 10

4. 利用公式 $1+2^3+\ldots+n^3=(\frac{n(n+1)}{2})^2$,可計算出 $11^3+12^3+\ldots+20^3$ 之值為:

(A) 41075 (B) 41095 (C) 41115 (D) 41135 。
5. 設
$$A(-4, -3)$$
, $B(6, 7)$, 點 P 在線段 AB 上且 \overline{AP} : $\overline{PB} = 3 : 2$, 則點 P 的坐標為 :
(A) $(2, 3)$ (B) $(\frac{11}{5}, \frac{14}{5})$ (C) $(\frac{12}{5}, \frac{13}{5})$ (D) $(\frac{7}{3}, \frac{10}{3})$ 。

6. 空間中,A(3, -1, 2)、B(-3, 2, 5), \overline{AB} 在yz平面的投影長為:

(A)
$$3\sqrt{2}$$
 (B) $3\sqrt{5}$ (C) 3 (D) $3\sqrt{3}$ \circ

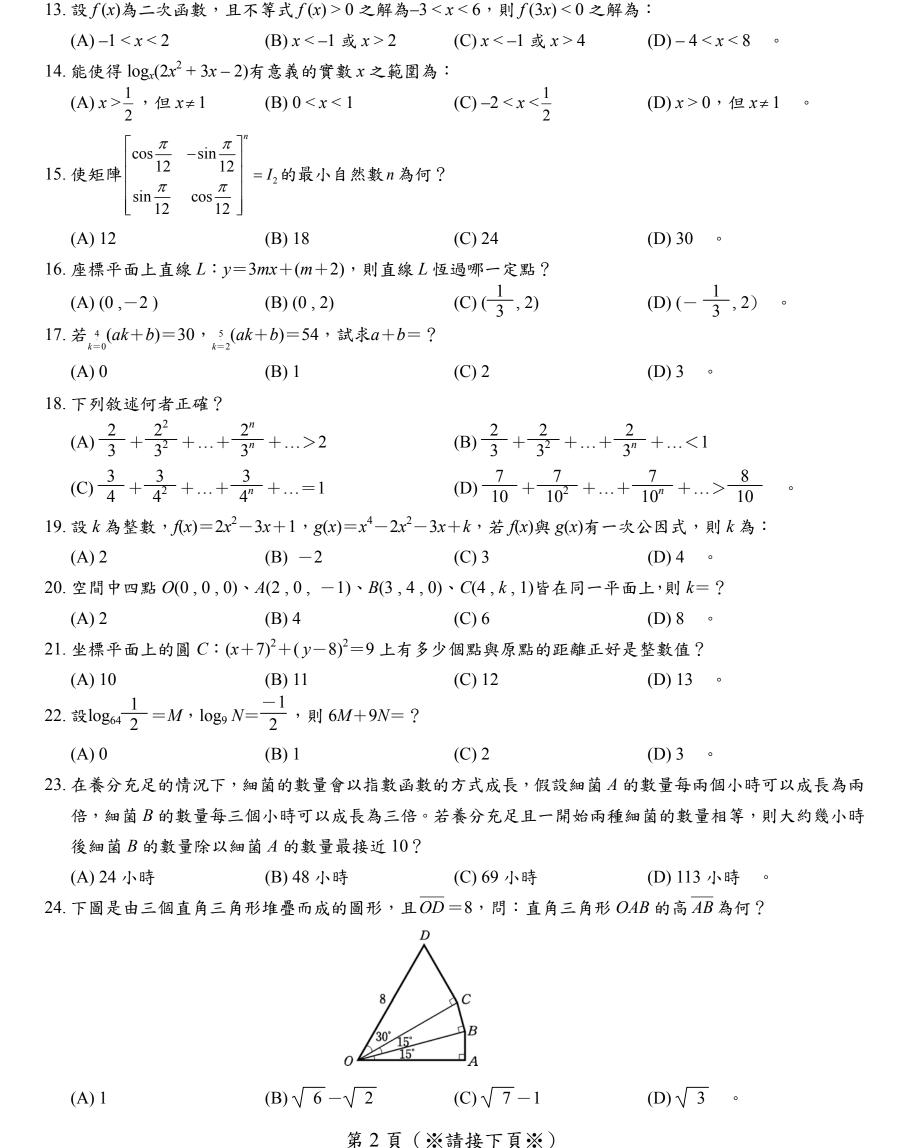

7. 假設坐標空間中三相異平面 $E_1 \setminus E_2 \setminus E_3$ 皆通過(-1,2,0)與(3,0,2)雨點,試問以下哪一點也同時在此三 平面上?

(A)
$$(2,2,2)$$
 (B) $(1,1,1)$ (C) $(4,-2,2)$ (D) $(-2,4,0)$ \circ 8. 下列哪一點在直線 $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4} \pm ?$

(A)
$$(2,3,4)$$
 (B) $(-1,-2,-3)$ (C) $(3,2,1)$ (D) $(3,5,7)$

9. 自點(2,5)到圓 $x^2+y^2+5x+8y+2=0$ 之一切線段長為: (B) 9(A) 81

10. 如下圖,
$$\triangle ABC$$
中, $\overline{AD} \perp \overline{BC}$,已知 $\overline{AB} = 20$, $\sin B = \frac{3}{5}$, $\cot C = \frac{3}{4}$,则 $\overline{AC} = ?$



(B) 17 (C) 26(D) 28 °

11. 設 a < 0,b < 0, $b^2 - 4ac > 0$,則拋物線 $y = ax^2 + bx + c$ 之頂點恆在第幾象限?

(B)二 (C)三

12. 甲、乙、丙、...等十人圍一圓桌而坐,則甲、乙、丙三人相鄰而坐之機率為: (B) $\frac{1}{10}$ $(C)\frac{1}{11}$ $(D)\frac{1}{12}$ \circ $(A) \frac{1}{9}$

(A)-2		U- U-	$\log_2 \csc 30^\circ = ?$
	(B)-1	(C) 0	(D) 1 °
26. 在 $\triangle ABC$ 中, $\overline{AB}=6$,	$\overline{AC} = 8$, $\overline{BC} = 6$, 9	\overline{BC} 上的中線 \overline{AM} 之長為	, :
$(A)\sqrt{41}$	(B) $2\sqrt{41}$	$(C)\frac{\sqrt{41}}{2}$	(D) $\sqrt{42}$ °
27. 橢圓 Γ : $\sqrt{(x-1)^2+(y)^2}$	$(-2)^2 + \sqrt{(x+2)^2 + (y^2)^2}$	<u>√−6)²</u> =13,短軸長為:	
(A) 12	(B) 11	(C) 14	(D) 13 °
(A) 12 28. 設與 $\frac{x^2}{9} + \frac{y^2}{4} = 1$ 共焦	點,且過點 $P(3,2)$ 的	橢圓方程式為 $\frac{x^2}{p} + \frac{y^2}{q} =$	$=1 , \mathop{\not{\!\!\!/}}\nolimits (p , q) = ?$
(A) (9, 4)	(B) (4, 9)	(C) (10, 15)	(D) (15, 10) °
29. 某次考試共有 10 題"5	選1"的單一選擇題	, <u>小華</u> 完全不知道要考試	,所以沒準備,答案準備全用猜的,
請問他全猜對的機率是	多少?		
(A) $\frac{1}{10!}$	(B) $\frac{1}{2^{10}}$	(C) $\frac{1}{P_5^{10}}$	(D) $\frac{1}{5^{10}}$ °
30. 袋中有 8 個白球, x個絲	工球,已知從袋中取2	個白球之機率為 14 , ;	式問x為何?
(A) 1	(B) 3	(C) 5	(D) 7 °
(三)請 31. 設P(x,y)為坐標平面上	將正確答案以2B鉛等	筆劃記於答案卡內。	$oldsymbol{eta}$,錯兩個或兩個以上選項不給分。 $oldsymbol{\overline{A}} = 13$,則 $oldsymbol{P}$ 點的位置可能在
哪裡?			
• •	(R) 管 - 免 服	(C) 管 二 免 即	
(A)第一象限	(B)第二象限	(C)第三象限	(D)第四象限
(A)第一象限 (E)原點。	() ()		(D)第四象限
 (A)第一象限 (E)原點。 32. 在 xy 平面上,設 S: x² 	$+y^2+2x-4y+k=0$,	判斷下列敘述何者正確?	(D)第四象限
 (A)第一象限 (E)原點。 32. 在 xy 平面上,設 S: x² (A)若 k=0,則 S 為一位 	$+y^2+2x-4y+k=0$, 固圓	判斷下列敘述何者正確? (B) 若 $k=5$,則 S λ	(D)第四象限) 為一點
 (A)第一象限 (E)原點。 32. 在 xy 平面上,設 S: x² (A)若 k=0,則 S 為一位 (C)若 k=-5,則 S 為虛 	$+y^2 + 2x - 4y + k = 0$, 固圓 這圓	判斷下列敘述何者正確?	(D)第四象限) 為一點
 (A)第一象限 (E)原點。 32. 在 xy 平面上,設 S: x² (A)若 k=0,則 S 為一位 (C)若 k=-5,則 S 為虛 (E)若 S 為一圓,則圓心 	$+y^2 + 2x - 4y + k = 0$, 固圓 這圓	判斷下列敘述何者正確? (B) 若 $k=5$,則 S λ	(D)第四象限) 為一點
 (A)第一象限 (E)原點。 32. 在 xy 平面上,設 S: x² (A)若 k=0,則 S 為一位 (C)若 k=-5,則 S 為虛 (E)若 S 為一圓,則圓心 33. 下列敘述何者正確? 	$+y^2 + 2x - 4y + k = 0$, 固圓 這圓	判斷下列敘述何者正確? (B)若 k=5,則 S 為 (D)若圓 S 切於 x 轉	(D)第四象限 的 為一點 由,則 k=1
 (A)第一象限 (E)原點。 32. 在 xy 平面上,設 S: x² (A)若 k=0,則 S 為一位 (C)若 k=-5,則 S 為虛 (E)若 S 為一圓,則圓心 33. 下列敘述何者正確? (A) sin(180°+θ)=sinθ 	$+y^2+2x-4y+k=0$, 固圓 這圓 公為 $(-1,2)$ 。	判斷下列敘述何者正確? $(B) 若 k = 5 , 則 S 為$ $(D) 若圓 S 切於 x 軸$ $(B) \cos(180° - \theta) =$	(D)第四象限 為一點 由,則 $k=1$
 (A)第一象限 (E)原點。 32. 在 xy 平面上,設 S: x² (A)若 k=0,則 S 為一位 (C)若 k=-5,則 S 為虛 (E)若 S 為一圓,則圓心 33. 下列敘述何者正確? 	$+y^2+2x-4y+k=0$, 固圓 公為 $(-1,2)$ 。	判斷下列敘述何者正確? (B)若 k=5,則 S 為 (D)若圓 S 切於 x 轉	(D)第四象限 為一點 由,則 $k=1$
 (A)第一象限 (E)原點。 32. 在 xy 平面上,設 S: x² (A)若 k=0,則 S 為一位 (C)若 k=-5,則 S 為虚 (E)若 S 為一圓,則圓心 33. 下列敘述何者正確? (A) sin(180°+θ)=sinθ (C) tan(90°+θ)=-cotθ 	$+y^2+2x-4y+k=0$, 固圓 公為 $(-1,2)$ 。	判斷下列敘述何者正確? $(B) 若 k = 5 , 則 S 為$ $(D) 若圓 S 切於 x 軸$ $(B) \cos(180° - \theta) =$	(D)第四象限 為一點 由,則 $k=1$
 (A)第一象限 (E)原點。 32. 在 xy 平面上,設 S: x² (A)若 k=0,則 S 為一位 (C)若 k=-5,則 S 為虛 (E)若 S 為一圓,則圓心 33. 下列敘述何者正確? (A) sin(180°+θ)=sinθ (C) tan(90°+θ)=-cotθ (E) csc(90°+θ)=secθ 34. 下列敘述何者正確? 	$+y^{2}+2x-4y+k=0$, 固圓 公為 $(-1,2)$ 。	判斷下列敘述何者正確? $(B) 若 k = 5 , 則 S 為$ $(D) 若圓 S 切於 x 軸$ $(B) \cos(180° - \theta) =$	(D)第四象限 為一點
 (A)第一象限 (E)原點。 32. 在 xy 平面上,設 S: x² (A)若 k=0,則 S 為一位 (C)若 k=-5,則 S 為虛 (E)若 S 為一圓,則圓心 33. 下列敘述何者正確? (A) sin(180°+θ)=sinθ (C) tan(90°+θ)=-cotθ (E) csc(90°+θ)=secθ 34. 下列敘述何者正確? 	$+y^2+2x-4y+k=0$, 固圓 注圓 公為 $(-1,2)$ 。	判斷下列敘述何者正確? $(B) 若 k = 5 , 則 S 為$ $(D) 若圓 S 切於 x 軸$ $(B) cos(180° -\theta) = (D) sec(270° +\theta) = (C) -5 為質數$	(D)第四象限 為一點

35. 設 $\omega = \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}$,則下列何者正確?

$$(A) \omega^{100} = \omega$$

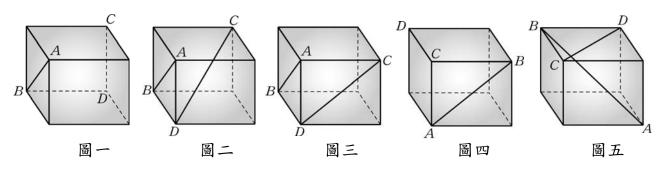
(B)
$$1 + \omega + \omega^2 = 0$$

(C)
$$(1+\omega)(1+\omega^2)=1$$

(D)
$$(2-\omega)(2-\omega^2)(3-\omega)(3-\omega^2)=91$$

(E)
$$\omega^{333} + \omega^{334} + ... + \omega^{566} = 0$$
 •

36. 下列何者正確?


$$(A) 0.\overline{9} < 1$$

$$(C) 0.1\overline{6} = \frac{1}{6}$$

(D)
$$0.1\overline{6} > 0.\overline{16}$$

(E)
$$2.3\overline{15} = \frac{2291}{990}$$
 •

37. 下列五個立方體中,何者可以得出 $\overrightarrow{AB} \bullet \overrightarrow{CD} = 0$?

(A)圖一

(D)圖四

38. P(-3,1,0),Q(4,15,-7)為直線 $L: \frac{x+3}{1} = \frac{y-1}{2} = \frac{z}{-1}$ 上兩相異點,且L 與平面E: 3x-y+2z-4=0 之

交點的坐標為 R(a,b,c),則:

$$(A) d(P, E) = 14$$

(B)
$$d(O, E) = 21$$

$$(C)\overline{PR}:\overline{OR}=2:3$$

(D)
$$d(P, E) = \sqrt{14}$$

(B)
$$d(Q, E) = 21$$

(E) $d(P, E) = \sqrt{21}$ °

39. 在xy平面上,下列參數式何者的圖形為一個圓?

(A)
$$\begin{cases} x = 1 + 2\cos\theta \\ y = -2 - 2\sin\theta \end{cases} \quad (\theta \in R)$$

(B)
$$\begin{cases} x = 1 + \cos \theta \\ y = 2\cos \theta \end{cases} \quad (\theta \in R)$$

(C)
$$\begin{cases} x = \cos \theta \\ y = \sin \theta \end{cases} \quad (0 \le \theta < \pi)$$

(D)
$$\begin{cases} x = 2\cos\theta - \sin\theta \\ y = \cos\theta + 2\sin\theta \end{cases} \quad (\theta \ge 0)$$

(E)
$$\begin{cases} x = 2 - \cos 2\theta \\ y = 1 + \sin 2\theta \end{cases} \quad (0 \le \theta \le \pi) \quad \circ$$

40. 設 θ 為銳角,則下列敘述何者正確?

(A)
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

(B)
$$\sin\theta\cos\theta = 1$$

(B)
$$\sin \theta \cos \theta = 1$$
 (C) $\tan^2 \theta - \sec^2 \theta = 1$

(D)
$$\tan \theta \cdot \csc \theta = \sec \theta$$
 (E) $\cot \theta = \cos \theta \cdot \csc \theta$

(E)
$$\cot \theta = \cos \theta \cdot \csc \theta$$