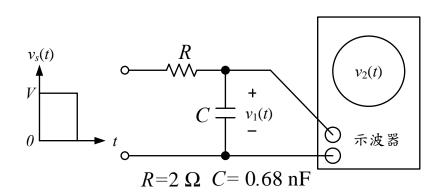
107年特種考試地方政府公務人員考試試題

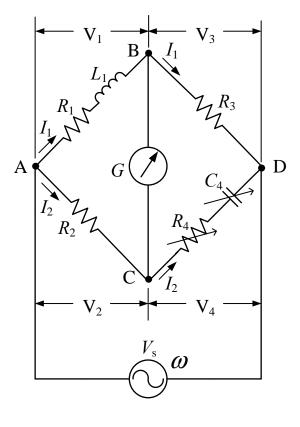
等 别:四等考試 類 科:電子工程

科 目:電子儀表概要 考試時間:1小時30分


座號:

※注意:(一)可以使用電子計算器。

(二)不必抄題,作答時請將試題題號及答案依照順序寫在試卷上,於本試題上作答者,不予計分。

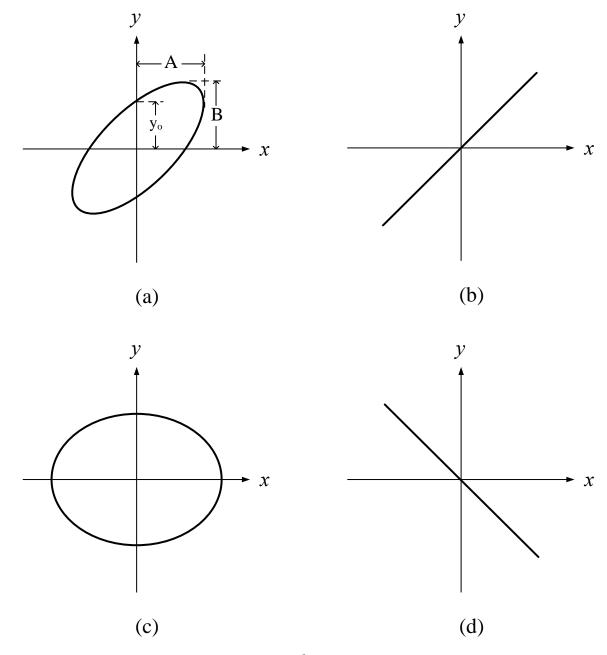

(三)本科目除專門名詞或數理公式外,應使用本國文字作答。

- 一、如圖一,有一理想脈波信號 $v_s(t)$ 經過一個 RC 積分器後送到示波器的輸入端,若該示波器上顯示的信號為 $v_2(t)$,其上升時間為 3.08 ns;其中 RC 濾波電路中,R=2 Ω 及 C=0.68 nF。試回答下列問題:
 - (-)理想脈波信號 $v_s(t)$ 通過 RC 電路之後,在 RC 電路上之電容 C 的信號 為 $v_1(t)$,其上升時間 t_{r1} 為多少秒?(6 分)
 - 二此示波器本身的上升時間 trs 為多少秒? (7分)

二、如圖二為 Hay 電橋(Hay's Bridge),其中 C_4 為標準可變電容, R_4 為可變電阻, R_2 及 R_3 為固定電阻。 L_1 及 R_1 分別為待測未知電感和其內電阻。 V_s 為 AC 電源,角頻率為 ω 。當電橋平衡時,試回答下列問題:

- (-) 求電感 $L_1=?(7分)$
- \square 求電感 L_1 的內電阻 $R_1 = ?$ (7分)
- (三 求電感 L_1 的品質因數 Q 值。(6 分)

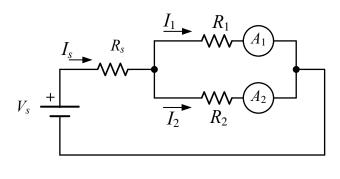
圖二


三、已知兩信號 $x = A\cos\omega t$ 及 $y = B\cos(\omega t + \theta)$,其相角差為 θ ,分別輸入到示波器的水平和垂直的輸入端,利用理查瑟式圖(Lissajous diagram)方法(波形圖示的定義如圖三(a)所示,其中 $\sin\theta \equiv y_o/B$),分別分析判斷示波器所顯示的下列四種狀態,分別表示兩信號 x 和 y 之間的相角差 θ 各為多少?(每小題 5 分,共 20 分)

(-)圖三(a)中,兩信號 x 和 y 之間的相角差 θ =?

 \Box 圖三(b)中,兩信號 x 和 y 之間的相角差 θ =?

 (Ξ) 圖三(c)中,兩信號 x 和 y 之間的相角差 θ =?


四圖三(d)中,兩信號 x 和 y 之間的相角差 θ =?

圖三

四、圖四中,已知 R_s = 7.5 Ω , R_1 = 18 Ω , R_2 = 6 Ω 及 V_s = 240 V ; 若安培計 A_1 的誤差為 2%,安培計 A_2 的誤差為 1%,試求:(以下問題均需考慮誤差範圍) (每小題 5 分,共 20 分)

- (-)由安培計 A_1 量測到的電流是多少安培 (A) ?
- \Box 由安培計 A_2 量測到的電流是多少安培 (A) ?
- (三)由電源端觀察到的電流 I。為多少安培(A)?
- 四計算電源 V_s 所提供的功率 P_s 是多少瓦 (W)?

圖四

五、有一數位電壓電錶的誤差為(±0.2%讀數,±2 digits),請回答下列問題:

- (一)在電錶讀數為 17000 V 時, 其產生的誤差百分比為多少? (10 分)
- 二在電錶讀數為 0.6000 V 時, 其產生的誤差百分比為多少? (10 分)