代號:31280 頁次:4-1

107年特種考試地方政府公務人員考試試題

等 别:三等考試

類 科:統計科 目:統計學

考試時間:2小時 座號:

※注意:(一)可以使用電子計算器。

- □不必抄題,作答時請將試題題號及答案依照順序寫在試卷上,於本試題上作答者,不予計分。
- (三)本科目得以本國文字或英文作答。

四作答時請參閱附表。

- 一、兩隨機變數 X, Y 的聯合機率密度函數為 $f(x, y) = ax^2y, 0 < x < y < 1$ 。
 - (-)請算出 a 使得 f(x, y)符合聯合機率密度函數的要求。(9 分)
 - 二請分別算出 X, Y 的邊際機率密度函數(marginal probability density function) $f_X(x)$, $f_Y(y)$,及條件機率密度函數(conditional probability density function) $f_{X|Y}(x|y)$, $f_{Y|X}(y|x)$ 。(16 分)
- 二、假設 $X_1, X_2, ..., X_n$ 為幾何分配的Geo(p) 隨機樣本。
 - (-)求 p 的最大概似估計(Maximum likelihood estimator), \hat{p} 。(10 分)
 - \Box 令 $\theta = \frac{1}{p}$,統計量 $\frac{1}{\hat{p}}$ 是否為 θ 的充分統計量?是否為 θ 的最小變異不偏估計量(minimum variance unbiased estimator)?(15 分)
- 三、某校今年派出9名代表參加科學知識競賽,得分及敘述性統計如下:

73	81	71	07	00	89	75	70	88
13	81	/4	8/	90	89	63	/9	88

樣本平均數=80.67,樣本標準差=8.6747,去年的平均成績為75.5。

欲比較今年的代表隊成績是否比去年好,在 5%顯著水準下,考慮兩種方法檢定今年成績是否有顯著進步。檢定結果應包括檢定假說、檢定統計量、臨界值以及檢定結果的詮釋。

- (一)假設成績服從常態分配,請完成今年平均成績是否有顯著性進步的檢定。(10分)
- □假設成績不服從常態分配但大致上對稱,請以符號檢定(sign test)及符號等級檢定(signed rank test),分別完成今年的成績中位數是否有顯著性進步的檢定。(20分)

代號:31280 百次:4-2

四、欲比較4種環保材質吸管的瑕疵率,研究部門以單因子(one-way)隨機實驗各進行5次檢測,實驗結果的敘述性統計如下:

Treat i	1	2	3	4
平均數 $(\bar{y}_{i.})$	15.6	13.8	7.2	11.4

$$\bar{y}_{..}^2 = 144 \cdot \sum_{i=1}^4 \bar{y}_{i.}^2 = 615.6 \cdot \sum_{j=1}^5 \bar{y}_{.j}^2 = 757.5 \cdot \sum_{i=1}^4 \sum_{j=1}^5 y_{ij}^2 = 3,320 \cdot \notin \psi_{ij}$$
 為第 i

種材質在第 j 次實驗的瑕疵率檢測值, $\bar{y}_{i.} = \sum_{j=1}^{5} y_{ij}/5$ 、 $\bar{y}_{.j} = \sum_{i=1}^{4} y_{ij}/4$ 、

$$\overline{y}_{..} = \sum_{i=1}^{4} \sum_{j=1}^{5} y_{ij} / 20$$

附表

- ○請完成變異數分析(ANOVA)表,以適當的符號定義參數,寫出檢定4種材質瑕疵率有差異的假說,並在5%顯著水準下提出你的檢定結論。(10分)
- ②假設第 1 種環保材質是市面上常用的材質,其他 3 種是新材質,請寫出常用材質與新材質的平均瑕疵率是否有差異, $\mu_1 = \frac{1}{3}(\mu_2 + \mu_3 + \mu_4)$,的對比假說,並在 5%顯著水準下提出你的檢定結論。(10 分)

符號等級檢定(威爾卡森,臨界點 W., a)

n':去除等於中位數後的樣本數,α:顯著水準

樣本數 n'

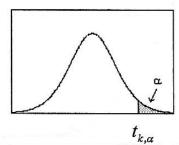
單尾	雙尾	5	6	7	8	9	10	11	12	13	14	15	16
$\alpha = .05$	$\alpha = .10$	1	2	4	6	8	11	14	17	21	26	30	36
$\alpha = .025$	$\alpha = .05$		1	2	4	6	8	11	14	17	21	25	30
$\alpha = .01$	$\alpha = .02$			0	2	3	5	7	10	13	16	20	24
$\alpha = .005$	α=.01				0	2	3	5	7	10	13	16	19

樣本數 n'

單尾	雙尾	17	18	19	20	21	22	23	24	25	26	27	28
$\alpha = .05$	$\alpha = .10$	41	47	54	60	68	75	83	92	101	110	120	130
$\alpha = .025$													
$\alpha = .01$	$\alpha = .02$	28	33	38	43	49	56	62	69	77	85	93	102
$\alpha = .005$	α=.01	23	28	32	37	43	49	55	61	68	76	84	92

樣本數 n'

單尾	雙尾	29	30	31	32	33	34	35	36	37	38	39	40
$\alpha = .05$	$\alpha = .10$	141	152	163	175	188	201	214	228	242	256	271	287
$\alpha = .025$	$\alpha = .05$	127	137	148	159	171	183	195	208	222	235	250	264
$\alpha = .01$	$\alpha = .02$	111	120	130	141	151	162	174	186	198	211	224	238
$\alpha = .005$	α=.01	100	109	118	128	138	149	160	171	183	195	208	221



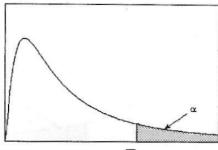
樣	太	304	n
Tric.	4	-80	- 11

單尾	雙尾	41	42	43	44	45	46	47	48	49	50	39	40
$\alpha = .05$													
$\alpha = .025$	$\alpha = .05$	279	295	311	327	344	361	379	397	415	434	250	264
$\alpha = .01$	$\alpha = .02$	252	267	281	297	313	329	345	362	380	398	224	238
$\alpha = .005$	α=.01	234	248	262	277	292	307	323	339	356	373	208	221

代號:31280 頁次:4-3

t分配表

$$P(t_k \ge t_{k,\alpha}) = \alpha$$



444	Paran Wina Carolina	· ·			k,α		
自由度				單尾顯著 2			
	0.1	0.05	0.025	0.01	0.005	0.0025	0.001
1	3.0777	6.3138	12.7062	31.8205	63.6567	127.3213	
2	1.8856	2.9200	4.3027	6.9646	9.9248	14.0890	22.3271
3	1.6377		3.1824	4.5407	5.8409	7.4533	10.2145
4	1.5332	2.1318	2.7764	3.7469	4.6041	5.5976	7.1732
5	1.4759	2.0150	2.5706	3.3649	4.0321	4.7733	5.8934
6	1.4398	1.9432	2.4469	3.1427	3.7074	4.3168	5.207
7	1.4149	1.8946	2.3646	2.9980	3.4995	4.0293	4.785
8	1.3968	1.8595	2.3060	2.8965	3.3554	3.8325	4.500
9	1.3830		2.2622	2.8214	3.2498	3.6897	4.296
10	1.3722	1.8125	2.2281	2.7638	3.1693	3.5814	4.143
11	1.3634		2.2010	2.7181	3.1058	3.4966	4.024
12	1.3562		2.1788	2.6810	3.0545	3.4284	3.929
13	1.3502	1.7709	2,1604	2.6503	3.0123	3.3725	3.852
14	1.3450		2.1448	2.6245	2.9768	3.3257	3.787
15	1:3406	1.7531	2.1314	2.6025	2.9467	3.2860	3.732
16	1.3368		2.1199	2.5835	2.9208	3.2520	3.6862
17	1.3334	1.7396	2.1098	2.5669	2.8982	3.2224	3.645
18	1.3304	1.7341	2.1009	2.5524	2.8784	3.1966	3.610
19	1.3277	1.7291	2.0930	2.5395	2.8609	3.1737	3.579
20	1.3253	1.7247	2.0860	2.5280	2.8453	3.1534	3.551
21	1.3232	1.7207	2.0796	2.5176	2.8314	3.1352	3.527
22	1.3212	1.7171	2.0739	2.5083	2.8188	3.1188	3.505
23	1.3195	1.7139	2.0687	2.4999	2.8073	3.1040	3.485
24	1.3178	1.7109	2.0639	2.4922	2.7969	3.0905	3.466
25	1.3163		2.0595	2.4851	2.7874	3.0782	3.450
26	1.3150	1.7056	2.0555	2.4786	2.7787	3.0669	3.435
27	1.3137	1.7033	2.0518	2.4727	2.7707	3.0565	3.421
28	1.3125	1.7011	2.0484	2.4671	2.7633	3.0469	3.408
29	1.3114	1.6991	2.0452	2.4620	2.7564	3.0380	3.396
30	1.3104	1.6973	2.0423	2.4573	2.7500	3.0298	3.385
35	1.3062	1.6896	2.0301	2.4377	2.7238	2.9960	3.340
40	1.3031	1.6839	2.0211	2.4233	2.7045	2.9712	3.306
45	1.3006	1.6794	2.0141	2.4121	2.6896	2.9521	3.281
50	1.2987	1.6759	2.0086	2.4033	2.6778	2.9370	
60	1.2958	1.6706	2.0003	2.3901	2.6603	2.9146	3.231
70	1.2938	1.6669	1.9944	2.3808	2.6479	2.8987	3.210
80	1.2922	1.6641	1.9901	2.3739	2.6387	2.8870	3.195
90	1.2910	1.6620	1.9867	2.3685	2.6316	2.8779	3.183
100	1.2901	1.6602	1.9840	2.3642	2.6259	2.8707	3.173
200	1.2858	1.6525	1.9719	2.3451	2.6006	2.8385	3.131
300	1.2844	1.6499	1.9679	2.3388	2.5923	2.8279	3.117
400	1.2837	1.6487	1.9659	2.3357	2.5882	2.8227	3.110
500	1.2832	1.6479	1.9647	2.3338	2.5857	2.8195	3.106
600	1.2830	1.6474	1.9639	2.3326	2.5840	2.8175	3.103
700	1.2828	1.6470	1.9634	2.3317	2.5829	2.8160	3.101
800	1.2826	1.6468	1.9629	2.3310	2.5820	2.8148	3.100
900	1.2825	1.6465	1.9626	2.3305	2.5813	2.8140	3.099
1000	1.2824	1.6464	1.9623	2.3301	2.5808	2.8133	3.098

F分配表

$$\alpha = 0.05$$

$$P(F_{m,n} \ge F_{m,n,\alpha}) = \alpha$$

 $F_{m,n,\alpha}$

						- n	$1,n,\alpha$					
		4		分	子	自	由	度	m			
	1	2	3		4		5		6	7	8	9
1			215.707	224.	583	230	.162	233	.986	236.768	238.883	240.543
-											19.3710	19.3848
3		9.5521	9.2766	9.1			0135		9406	8.8867	8.8452	8.812
4		6.9443	6.5914	6.3			2561		1631	6.0942	6.0410	5.998
	6.6079	5.7861	5.4095	5.1			0503		9503	4.8759	4.8183	4.772
		5.1433	4.7571	4.5			3874		2839	4.2067	4.1468	4.099
		4.7374	4.3468	4.1			9715		8660	3.7870	3.7257	3.676
8		4.4590	4.0662	3.8			5875		5806	3.5005	3.4381	3.3883
2		4.2565	3.8625	3.6			1817		3738	3.2927	3.2296	3.1789
10	4.9646	4.1028	3.7083	3.4	780	3	3258	3.	2172	3.1355	3.0717	3.020
1.		3.9823	3.5874	3.3		3.2	2039	3.	0946	3.0123	2.9480	2.8962
12		3.8853	3.4903	3.2			1059	2.	9961	2.9134	2.8486	2.7964
13		3.8056	3.4105	3.1			0254		9153	2.8321	2.7669	2.7144
14		3.7389	3.3439	3.1	122	2.9	9582	2.	8477	2.7642	2.6987	2.6458
15		3.6823	3.2874	3.0	556	2.9	9013		7905	2.7066	2.6408	2.5876
16		3.6337	3.2389	3.0	069	2.8	3524	2.	7413	2.6572	2.5911	2.5377
17	and the second second	3.5915	3.1968	2.9	647	2.8	3100	2.	6987	2.6143	2.5480	2.4943
18		3.5546	3.1599	2.9			7729	2.	6613	2.5767	2.5102	2.4563
19		3.5219	3.1274	2.8			7401		6283	2.5435	2.4768	2.422
20	4.3512	3.4928	3.0984	2.8	661	2.	7109	2.	5990	2.5140	2.4471	2.3928
21	4.3248	3.4668	3.0725	2.8	401	2.6	5848	2.	5727	2.4876	2.4205	2.3660
22		3.4434	3.0491	2.8		2.6	6613		5491	2.4638	2.3965	2.3419
23		3.4221	3.0280	2.7			5400	2.	5277	2.4422	2.3748	2.3201
24		3.4028	3.0088	2.7	763	2.6	5207	2.	5082	2.4226	2.3551	2.3002
25		3.3852	2.9912	2.7		2.6	5030	2.	4904	2.4047	2.3371	2.2821
26		3.3690	2.9752	2.7		2.5	868	2.	4741	2.3883	2.3205	2.2655
27		3.3541	2.9604	2.7		2.5	5719	2.	4591	2.3732	2.3053	2.2501
28		3.3404	2.9467	2.7		2.5	5581	2.	4453	2.3593	2.2913	2.2360
29		3.3277	2.9340	2.7			454	2.	4324	2.3463	2.2783	2.2229
30	4.1709	3.3158	2.9223	2.6	896	2.5	5336	2.	4205	2.3343	2.2662	2.2107
35	4.1213	3.2674	2.8742	2.6	415	2.4	1851	2.	3718	2.2852	2.2167	2.1608
40		3.2317	2.8387	2.6	060	2.4	1495	2.	3359	2.2490	2.1802	2.1240
45	4.0566	3.2043	2.8115	2.5	787	2.4	1221	2.	3083	2.2212	2.1521	2.0958
50	4.0343	3.1826	2.7900	2.5	572	2.4	1004	2.	2864	2.1992	2.1299	2.0734
60	4.0012	3.1504	2.7581	2.5			3683		2541	2.1665	2.0970	2.0401
70	3.9778	3.1277	2.7355	2.5			3456		2312	2.1435	2.0737	2.0166
80	3.9604	3.1108	2.7188	2.4			3287		2142	2.1263	2.0564	1.9991
90	3.9469	3.0977	2.7058	2.4	729		3157		2011	2.1131	2.0430	1.9856
100		3.0873	2.6955	2.4		2.3	3053		1906	2.1025	2.0323	1.9748
120	3.9201	3.0718	2.6802	2.4			2899		1750	2.0868	2.0164	1.9588