109年公務人員初等考試試題

代號:3515 頁次:8-1

笲 別:初等考試 科:電子工程 類 目:電子學大意 科 考試時間:1小時

※注意:(一)本試題為單選題,請選出一個正確或最適當的答案,複選作答者,該題不予計分。

二本科目共40 題,每題2.5 分,須用2B鉛筆在試卡上依題號清楚劃記,於本試題上作答者,不予計分。

(三)可以使用電子計算器。

下列有關理想運算放大器的特性,何者正確?

(A)輸入阻抗:0

(B)開迴路電壓增益:0

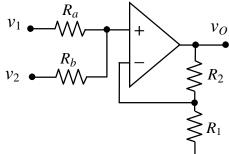
(C) 共模電壓增益:0

(D)共模拒斥比 CMRR: 0

2 某運算放大器的共模增益 $A_{cm} = -0.01$,差模增益 $A_d = 100$,則其 CMRR 為若干 dB?

(B) - 20

(C) 20

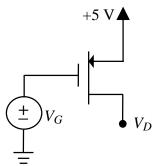

圖示為理想運算放大器電路,若 $R_1 = 1 \text{ k}\Omega \cdot R_2 = 3 \text{ k}\Omega \cdot R_a = 1 \text{ k}\Omega \cdot R_b = 3 \text{ k}\Omega \cdot v_1 = 4 \text{ V} \cdot v_2 = -2 \text{ V}$, 則輸出電壓 v_o 為若干 V?

(A) 0

(B) 5

(C) 10

(D) 12

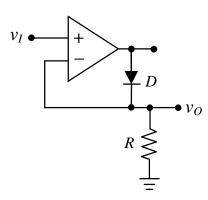

圖示電路中場效電晶體(FET)之 $V_{TH} = -0.7 \, \text{V}$,下列電壓何者可使電晶體工作在飽和區(SaturationRegion)?

(A)
$$V_G = 5 \text{ V} \cdot V_D = 4 \text{ V}$$

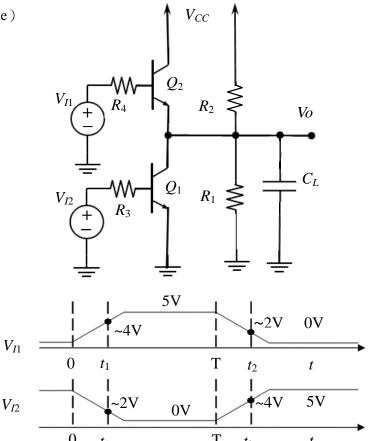
(B)
$$V_G = 4 \text{ V} \cdot V_D = 4 \text{ V}$$

(C)
$$V_G = 3 \text{ V} \cdot V_D = 4 \text{ V}$$

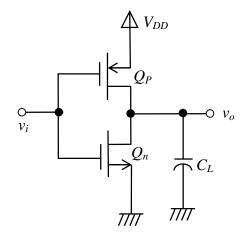
(D)
$$V_G = 2 \text{ V} \cdot V_D = 4 \text{ V}$$


圖示為理想運算放大器電路,若運算放大器的正負輸出飽和電壓為±10V,二極體導通時兩端電壓為 $0.7 \, \mathbf{V}$,輸入電壓 $v_I \, \mathbf{\lambda} + 1 \, \mathbf{V}$,則 $v_O \, \mathbf{\lambda} \, \mathbf{\Xi} + \mathbf{V}$?

(A) - 10


(B) 0

(C)+1


(D)+10

- 6 有一矽雙極性接面電晶體(Si-BJT)電路及輸入接腳 V_{I1} 、 V_{I2} 的電壓波形如下所示, $V_{CC}=5$ V, $R_1=R_2=1$ kΩ, $R_3=R_4=100$ Ω, $C_L=5$ μF,電晶體電流增益 $\beta_{Q1}=\beta_{Q2}=100$ 。試研判電晶體 Q_2 在時間點 T 最可能的工作模式:
 - (A)飽和模式 (Saturation mode)
 - (B)線性模式 (Linear mode)
 - (C)主動模式 (Active mode)
 - (D)截止模式 (Cut-off mode)

- 7 如圖所示為一 CMOS 反相器,電晶體之 $\mu_n C_{ox} = \mu_p C_{ox}$;兩電晶體之 W/L 相同; $V_m = |V_p|$ 。反相器之負載為電容 C_L 。若輸入的信號 v_i 為方波,其高電位為 V_{DD} 、低電位為 0,週期為 T。問流過電晶體 Q_P 的平均電流?
 - (A) 0
 - (B) $(\mu_p C_{ox}/2)(W/L)(V_{DD}-|V_{tp}|)^2$
 - (C) $V_{DD}C_L/(2T)$
 - (D) $V_{DD}C_L/T$

- 8 一個 NPN 雙極性電晶體,若 $\beta = 50$ 且操作在主動作用區(active region),下列何者正確?
 - (A)集極電流與射極電流的比值為 1.02
- (B)集極對射極的電壓應為正值
- (C)電流的方向為由射極流入集極
- (D)基射極應為反偏
- 9 類比積體電路中,使用電流鏡或電流源來代替電阻性負載,下列何者錯誤?
 - (A)為了減少電路占用的面積

- (B)可降低電源電壓
- (C)為了提供比電阻性負載更小的等效電阻
- (D)可提高放大器增益

有一個電壓訊號 ν 對時間 t 的函數為 $\nu(t) = 6 \sin(2\pi f_1 t) + 12 \sin(2\pi f_2 t)$ 伏特, $f_1 = 5$ kHz, $f_2 = 8$ kHz。將此電壓訊號加到一個 1 Ω 的電阻之上。問此電阻承受的訊號功率為何?

(A) 36 W

(B) 90 W

(C) 144 W

(D) 180 W

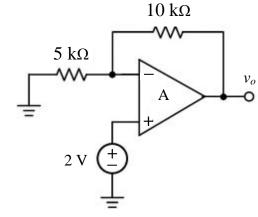
11 理想 CMOS 反相器 (Inverter) 的靜態功率損耗為何?

(A)很大

(B)中等

(C)與邏輯狀態有關

(D)零

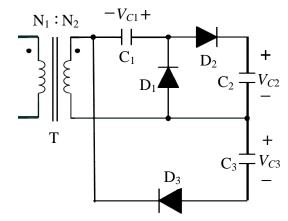

12 如圖運算放大器電路,若電壓增益 A 為無限大,試求輸出電壓 $v_o=?$

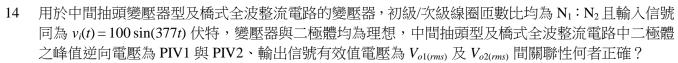
(A) -4 V

(21)

(B) 4 V(C) -6 V

(D) 6 V


13 電容器 $C_1 \sim C_3$ 配合變壓器 T 及二極體 $D_1 \sim D_3$ 所構成之倍壓電路如圖,輸入信號 $v_i(t) = 100 \sin(377t)$ 伏 特、 $N_1: N_2 = 10: 1$ 且變壓器與所有二極體均視為理想時,在電路穩態條件下電容器 $C_1 \sim C_3$ 所跨電壓 $V_{C1} \sim V_{C3}$ 之敘述何者正確?


(A) $V_{C1} + V_{C2} = 20 \text{ V}$

(B) $V_{C1} + V_{C3} = 30 \text{ V}$

(C) $V_{C2}+V_{C3}=10 \text{ V}$

(D) $V_{C1} + V_{C2} + V_{C3} = 40 \text{ V}$

(A) PIV1 = 2PIV2

(B) $V_{o1(rms)} = V_{o2(rms)}$

(C) $2V_{o1(rms)} = V_{o2(rms)}$

(D) 2PIV1 = PIV2

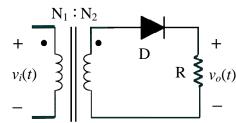
15 漣波因素(ripple factor)或漣波百分比(r%)用以評比整流-濾波電路之優劣,已知各種整流濾波電路所提供之相關資訊如輸出信號之有效值電壓 $V_{o(rms)} = \mathbf{A}$ 、平均值電壓 $V_{o(dc)} = \mathbf{B}$ 伏特、漣波電壓有效值 $V_{r(rms)} = \mathbf{C}$ 伏特,那一選項中電路的濾波效果最佳?

(A) A = 15, B = 12

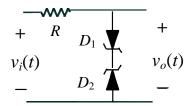
(B) B = 12, C = 1

(C) r = 10

(D) A = 15, C = 1

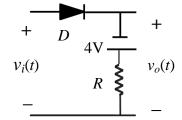

16 圖示半波整流電路之輸入信號 $v_i(t) = 20 \sin(754t)$ 伏特及 $N_1: N_2 = 2:1$,變壓器與二極體均視為理想,關於輸出信號 $v_o(t)$ 之頻率 f_o 、有效值電壓 $V_{o(rms)}$ 、平均值電壓 $V_{o(dc)}$ 、峰值電壓 $V_{o(p)}$ 等的約略值,下列 敘述何者正確?

(A) $f_o = 754 \text{ Hz}$

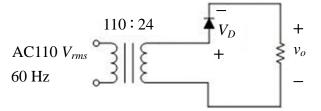

(B) $V_{o(p)} = 20 \text{ V}$

(C) $V_{o(rms)} = 7.1 \text{ V}$

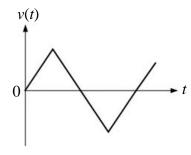
(D) $V_{o(dc)} = 3.2 \text{ V}$

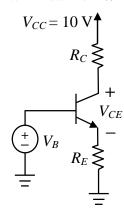


- 17 圖示截波電路中,齊納(Zener)二極體 D_1 與 D_2 於順偏時視為理想而反偏時之崩潰電壓分別為 $V_{Z1}=5$ V 與 $V_{Z2}=7$ V,當輸入信號 $v_i(t)=10$ $\sin(\omega t)$ 伏特時,求輸出信號 $v_o(t)$ 的峰對峰電壓值為多少伏特?
 - (A) 2 V
 - (B) 5 V
 - (C) 7 V
 - (D) 12 V

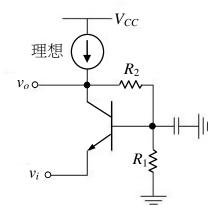


- 18 振幅為 8 伏特的三角形週期波信號輸入如圖所示之截波電路 (D 為理想二極體),決定輸出信號 $v_o(t)$ 的平均值電壓為多少伏特?
 - (A) 0.5 V
 - (B) 1 V
 - (C) 0.5 V
 - (D) 1 V

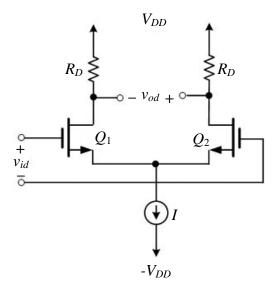

 $\begin{array}{c|c}
v_i(t) \\
8 \\
\hline
 & \tau & 2\tau \\
\hline
 & -8 \\
\hline
\end{array}$


- 19 如圖所示之電路,假如二極體之壓降 V_D 為 $0.7 \, \mathrm{V}$,求其輸出電壓 v_o 之平均值為何?
 - (A) 5.37 V
 - (B) 10.58 V
 - (C) 23.3 V
 - (D) 109.3 V

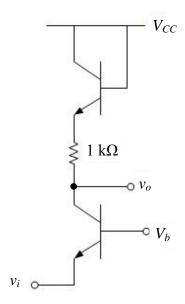
- 20 圖中 v(t)的電壓波形為振幅對稱之三角波,經過微分器後,其輸出波形為何?
 - (A)正弦波
 - (B)三角波
 - (C)直流
 - (D)方波


- 21 下列何者不是二極體電路的主要應用?
 - (A)整流電路
- (B) 截波電路
- (C)箝位電路
- (D)放大電路
- 22 60 Hz 的交流小訊號經全波整流後,輸出訊號之頻率應為:
 - (A) 20 Hz
- (B) 30 Hz
- (C) 60 Hz
- (D) 120 Hz
- 23 圖示電路,若 $V_{CC} = 10 \text{ V}$, $V_{CE} = 3 \text{ V}$,則此電晶體的工作區應為何?
 - (A)主動區 (Active Region)
 - (B)飽和區 (Saturation Region)
 - (C)三極管區 (Triode Region)
 - (D)截止區 (Cutoff)

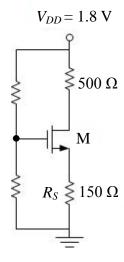
24 如圖所示之電路,其中電晶體之爾利(Early)電壓 $V_A = \infty$,求此電路之小信號輸出阻抗值為何?



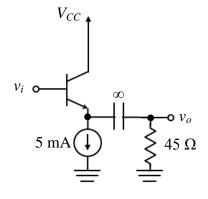
- (B) R_2
- (C) $R_1 + R_2$
- (D) $R_2 // (1/g_m)$

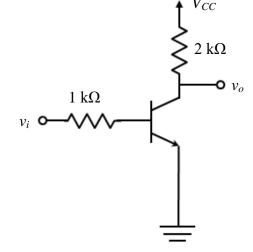

25 如圖為 MOSFET 差動式放大器,已知電晶體 Q_1 和 Q_2 的臨界電壓 V_{TH} 、轉導 g_m 、輸出阻抗 r_o 等參數 均相同,試求差動增益 $A_d = v_{od}/v_{id}$ 之值?

- (A) $g_m R_D$
- (B) $-g_m R_D$
- (C) $g_m R_D / 2$
- (D) $-g_m R_D/2$



26 如圖所示之電路,其中各電晶體之參數皆為 $\beta_{npn}=100$, $1~kT/q=1V_T=26~mV$ 且爾利 (Early)電壓 $V_A=\infty$,假定此電路之直流偏壓電流 $I_C=4~mA$,求此電路之小信號電壓增益值為何?


- (A) 72.8
- (B) 115.8
- (C) 154.8
- (D) 173.8

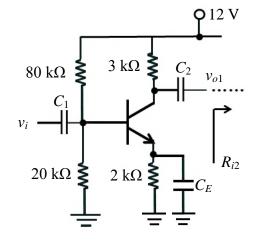

- 27 如圖所示之電路,假設電晶體 M 之參數如下: $\mu_n C_{ox} = 200$ μA/V², $V_{TH} = 0.4$ V 且 $\lambda = 0$;若跨在電阻 R_S 上之電壓為 300 mV,欲使 M 維持在飽和區之最小可容許之 W/L 值為何?
 - (A) 20
 - (B) 40
 - (C) 60
 - (D) 80

- 28 MOSFET 的小訊號模型中,汲極的等效輸出電阻 r_o 與下列何者成正比?
 - (A)通道寬度 W
- (B)通道長度 L
- (C)過驅電壓 ($V_{GS}-V_{TH}$) (D)汲極電流 I_D
- 29 如圖所示之射極隨耦器之 v_o/v_i 最接近值為何?假設電流源為理想且 $1kT/q = 1V_T = 26 \text{ mV}$ 。
 - (A) 0.9
 - (B) 0.8
 - (C) 0.7
 - (D) 0.6

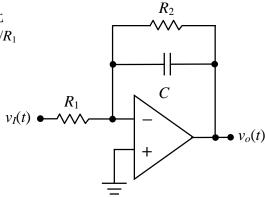
- 30 如圖所示共射極放大器之 v_o/v_i 為何?假設電晶體之 $g_m = 50$ mA/V, $\beta = 50$ 。
 - (A) 25
 - (B) 50
 - (C) 75
 - (D) 100

- 31 關於 MOSFET 的本質增益 $g_m r_o$,下列敘述何者正確?
 - (A) $g_m r_o$ 與過驅電壓 ($V_{GS} V_{TH}$) 成正比
- (B) $g_m r_o$ 與過驅電壓($V_{GS} V_{TH}$)成反比

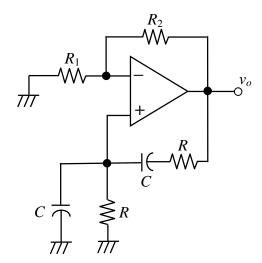
(C) $g_m r_o$ 與偏壓電流 I_D 成正比

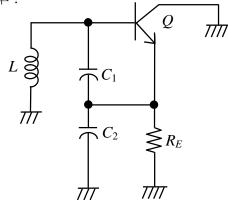

(D) $g_m r_o$ 與偏壓電流 I_D 成反比

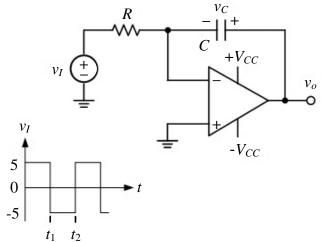
32 若一個雙極性電晶體(BJT)在主動區操作模式下,射極電流為 5.05 mA,基極電流為 0.05 mA,則 其 β 值為:

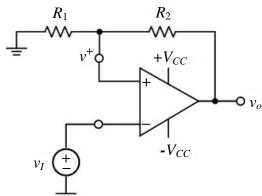

(A) 98 (B) 99 (C) 100 (D) 101

33 如圖之 RC 串級放大電路中,第 2 級放大電路(未顯示)的輸入電阻 R_{i2} = 1.5 kΩ,電晶體之 β_1 = 81、 $V_{BE,on}$ = 0.6 V,求第 1 級放大電路的電壓增益大小(v_{o1}/v_i)最接近值為:


- (A) 30
- (B) 60
- (C) 80
- (D) 100


- 34 下列有關圖示電路的敘述何者正確?
 - (A)為微分電路
 - (B)-3dB 頻率與 R₁成正比
 - (C)直流電壓的增益為 $-R_2/R_1$
 - (D)為高通濾波器


- 35 如圖所示為一文氏電橋振盪器。 $R_2 = 100$ kΩ, $R_1 = 20$ kΩ,R = 10 kΩ,C = 0.1 μF。求振盪器的振盪 頻率?
 - (A) 15.9 Hz
 - (B) 79.6 Hz
 - (C) 159 Hz
 - (D) 1000 Hz


- 36 如圖所示為一考畢子振盪器(Colpitts Oscillator)電路,其偏壓電路並沒有畫出來。電晶體 Q 之 $g_m = 10 \text{ mA/V}$, $R_E = 1 \text{ k}\Omega$, $L = 20 \text{ }\mu\text{H}$, $C_1 = 25 \text{ pF}$, $C_2 = 100 \text{ pF}$ 。假若電晶體由基極視入的阻抗大到可以忽略。求電路的振盪頻率?
 - (A) 3.2 MHz
 - (B) 8 MHz
 - (C) 32 MHz
 - (D) 80 MHz

- 37 已知一運算放大器 (OPA) 的開路直流增益 A_o 為 100 dB 和單一增益頻率 f_T 為 10 MHz,若此 OPA 接成非反相輸入 (non-inverting input) 放大器,其增益 A_v 為 60 dB;試問該非反相輸入放大器的頻寬 f_H 约為多少?
 - (A) 100 kHz
- (B) 10 kHz
- (C) 1 kHz
- (D) 100 Hz
- 38 有一運算放大器(OPA),已知其直流增益為 $100 \, dB$ 和單一增益頻率 f_T 為 $5 \, MHz$,試求其 $-3 \, dB$ 的 頻寬 f_B 為多少?
 - (A) 5 Hz
- (B) 50 Hz
- (C) 5 kHz
- (D) 50 kHz
- 39 如圖電路,已知 R = 10 kΩ 和 C = 0.01 μF,輸入為±5 V 對稱方波,試求輸出三角波電壓在 t = 0 到 $t = t_1$ 的斜率為多少 V/sec?
 - $(A) + 5 \times 10^4$
 - (B) -5×10^4
 - $(C) 10 \times 10^4$
 - (D)+ 10×10^4

- 40 如圖雙穩態電路,已知輸出電壓 v_o 飽和在 \pm 13 V,若設計臨界電壓(threshold voltage)在 \pm 5 V,且 令 R_1 = 10 k Ω ,試求 R_2 為多少?
 - (A) $16~k\Omega$
 - (B) $20~k\Omega$
 - (C) 32 $k\Omega$
 - (D) $40 \ k\Omega$

